841 research outputs found

    Prevalence and Antimicrobial Susceptibility of Methicillin-resistant Staphylococcus aureus in Pregnant Women and Their Newborns in Las Vegas, Nevada

    Full text link
    Colonization and infection by resistant strains of Staphylococcus aureus are being reported in epidemic proportions. The goal of this study was to determine the local prevalence of methicillin-resistant Staphylococcus aureus (MRSA) colonization in pregnant women in southern Nevada and how it correlates with colonization and infection of their neonates. Signed consent was obtained, and a brief questionnaire was administered by the medical staff to each pregnant woman to collect demographic data and pertinent medical, family and social history. Nasal and vaginal specimens were obtained from pregnant women at ≥35 weeks gestation, and nasal and umbilicus specimens were obtained from their newborns. Specimens were cultured onto two selective media for S. aureus and MRSA. Potential MRSA isolates were further evaluated for susceptibility to antibiotics. Specimens from 307 pregnant women and 174 neonates were collected, resulting in 172 mother-neonate paired specimens. A total of 278 questionnaires were received from study participants. MRSA prevalence in pregnant women was 1.0% and 0.3% for nasal and vaginal specimens, respectively. The MRSA prevalence in neonates was 0% and 0.6% for nasal and umbilical specimens, respectively. Four different antimicrobial susceptibility profiles were observed among the MRSA isolates. The results did not show transmission of MRSA from pregnant women to their newborns, or infections of newborns with MRSA. It is expected that the results of this study will inform future decisions on surveillance, treatment and prevention of MRSA infections in Nevada

    Prevalence and Antimicrobial Agent Susceptibility of Methicillin-resistant Staphylococcus aureus in Healthy Pediatric Outpatients in Las Vegas

    Full text link
    Colonization and infection by community-associated resistant strains of Staphylococcus aureus are being reported in epidemic proportions. The purpose of this study was to determine the local prevalence of methicillin-resistant Staphylococcus aureus (MRSA) colonization in children and to characterize the MRSA isolates in the laboratory with regard to antimicrobial agent susceptibility patterns, and the presence of the mecA and the Panton-Valentine leukocidin (PVL) genes. Nasal swabs were collected at two pediatric clinics from a total of 505 children during health maintenance visits. A brief questionnaire was administered to collect demographic data and pertinent medical, family, and social history. Samples were cultured onto 2 selective media for S. aureus and MRSA. Potential MRSA isolates were further evaluated by real-time polymerase chain reaction (PCR), and for susceptibility to eight antibiotics by disk diffusion. Culture results showed that MRSA was present in 15 of the 505 specimens (3.0%). Six different antimicrobial susceptibility profiles were observed among the MRSA isolates. PCR amplification results showed that all 15 MRSA isolates were positive for the presence of the mecA gene, and 10 MRSA isolates contained the PVL gene. Understanding local prevalence rates and the role of colonization in infection are needed to develop effective interventions to reduce MRSA infections

    The oral microbiome of denture wearers is influenced by natural dentition

    Get PDF
    Objectives: The composition of dental plaque has been well defined, whereas currently there is limited understanding of the composition of denture plaque and how it directly influences denture related stomatitis (DS). The aims of this study were to compare the microbiomes of denture wearers, and to understand the implications of these towards inter-kingdom and host-pathogen interactions within the oral cavity. Methods: Swab samples were obtained from 123 participants wearing either a complete or partial denture; the bacterial composition of each sample was determined using bar-coded illumina MiSeq sequencing of the bacterial hypervariable V4 region of 16S rDNA. Sequencing data processing was undertaken using QIIME, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. The dentures were sonicated to remove the microbial flora residing on the prosthesis, sonicate was then cultured using diagnostic colorex Candida media. Samples of unstimulated saliva were obtained and antimicrobial peptides (AMP) levels were measured by ELISA. Results: We have shown that dental and denture plaques are significantly distinct both in composition and diversity and that the oral microbiome composition of a denture wearer is variable and is influenced by the location within the mouth. Dentures and mucosa were predominantly made up of Bacilli and Actinobacteria. Moreover, the presence of natural teeth has a significant impact on the overall microbial composition, when compared to the fully edentulous. Furthermore, increasing levels of Candida spp. positively correlate with Lactobacillus spp. AMPs were quantified, though showed no specific correlations. Conclusions: This is the first study to provide a detailed understanding of the oral microbiome of denture wearers and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS, though we were unable to show a defined role for AMPs

    Can Graduating Students Design Software Systems?

    Get PDF
    This paper examines software designs produced by students nearing completion of their Computer Science degrees. The results of this multi-national, multi-institutional experiment present some interesting implications for educators

    ENDO-Pore:high-throughput linked-end mapping of single DNA cleavage events using nanopore sequencing

    Get PDF
    Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates

    Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    Get PDF
    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools

    Defining an epidemiological landscape that connects movement ecology to pathogen transmission and pace-of-life

    Get PDF
    Pathogen transmission depends on host density, mobility and contact. These components emerge from host and pathogen movements that themselves arise through interactions with the surrounding environment. The environment, the emergent host and pathogen movements, and the subsequent patterns of density, mobility and contact form an ‘epidemiological landscape’ connecting the environment to specific locations where transmissions occur. Conventionally, the epidemiological landscape has been described in terms of the geographical coordinates where hosts or pathogens are located. We advocate for an alternative approach that relates those locations to attributes of the local environment. Environmental descriptions can strengthen epidemiological forecasts by allowing for predictions even when local geographical data are not available. Environmental predictions are more accessible than ever thanks to new tools from movement ecology, and we introduce a ‘movement-pathogen pace of life’ heuristic to help identify aspects of movement that have the most influence on spatial epidemiology. By linking pathogen transmission directly to the environment, the epidemiological landscape offers an efficient path for using environmental information to inform models describing when and where transmission will occur

    Quantification of Extracellular DNA Network Abundance and Architecture within Streptococcus gordonii Biofilms Reveals Modulatory Factors

    Get PDF
    Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit

    Estimating Surface Area in Early Hominins

    Get PDF
    Height and weight-based methods of estimating surface area have played an important role in the development of the current consensus regarding the role of thermoregulation in human evolution. However, such methods may not be reliable when applied to early hominins because their limb proportions differ markedly from those of humans. Here, we report a study in which this possibility was evaluated by comparing surface area estimates generated with the best-known height and weight-based method to estimates generated with a method that is sensitive to proportional differences. We found that the two methods yield indistinguishable estimates when applied to taxa whose limb proportions are similar to those of humans, but significantly different results when applied to taxa whose proportions differ from those of humans. We also found that the discrepancy between the estimates generated by the two methods is almost entirely attributable to inter-taxa differences in limb proportions. One corollary of these findings is that we need to reassess hypotheses about the role of thermoregulation in human evolution that have been developed with the aid of height and weight-based methods of estimating body surface area. Another is that we need to use other methods in future work on fossil hominin body surface areas

    Estimating Grizzly Bear Use of Large Ungulate Carcasses With GPS Telemetry Data

    Get PDF
    Ungulate meat is among the most calorie-rich food sources available to grizzly bears  (Ursus arctos) in the greater Yellowstone ecosystem (GYE). However, the ephemeral and unpredictable nature of carcasses makes them difficult to study and their influence on grizzly bear foraging and spatial ecology is poorly understood. We developed a spatial-clustering technique specifically for detecting grizzly bear use of large ungulate carcasses using Global Positioning System (GPS) telemetry locations (n = 54 bear years). We used the DBScan algorithm to identify GPS clusters of individual bears (n = 2,038) and intersected these clusters with an independent dataset of site  visits to recent bear movement paths based from randomly selected days (n = 732 site visits; 2004–2011) resulting in 174 clusters associated with field measured bear behavior. Using a suite of predictor variables derived from GPS telemetry locations, e.g., duration of cluster, area used, activity sensor values, re-visitation rate, we used multinomial logistic regression to predict the probability of belonging to  each of the five response classes (resting, multiple-use, low-biomass carcass, high-biomass carcass, old carcass). Focusing on the high-biomass carcass category, for which our top model correctly classified 88 percent of the carcasses correctly, we applied our approach to a larger dataset of GPS data to examine trends in large-ungulate carcass using of grizzly bears in the GYE from 2002-2011. We found quantitative support for a positive effect of year and mortality adjusted white bark pine cone counts on the carcass-use index during the fall months (Sep and Oct) from 2002-2011
    • …
    corecore