-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Aberystwyth Research Portal

PRIFYSGOL

E¥ ABERYSTWYTH

—=—_ UNIVERSITY

Aberystwyth University

Can Graduating Students Design Software Systems?
Ratcliffe, Mark Bartley; Mostrom, Jan Erik; Eckerdal, Anna; McCartney, Robert; Zander, Carol

Publication date:
2006

Citation for published version (APA):
Ratcliffe, M., Mostrém, J. E., Eckerdal, A., McCartney, R., & Zander, C. (2006). Can Graduating Students Design
Software Systems?.

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

https://core.ac.uk/display/288842948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/publications/can-graduating-students-design-software-systems(ac19a771-795d-4f61-8ca2-4c114238a656).html
https://pure.aber.ac.uk/portal/en/publications/can-graduating-students-design-software-systems(ac19a771-795d-4f61-8ca2-4c114238a656).html

Can Graduating Students Design Software Systems?

Anna Eckerdal
Department of Information
Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Mark Ratcliffe
Department of Computer Science
University of Wales
Aberystwyth, Wales

mbr@aber.ac.uk

ABSTRACT

This paper examines software designs produced by students
nearing completion of their Computer Science degrees. The
results of this multi-national, multi-institutional experiment
present some interesting implications for educators.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computers and In-
formation Science Education; D.2.11 [Software Engineer-
ing]: Software Architectures

General Terms

Measurement, Experimentation

Keywords

Design, Software Engineering, Student Performance

1. INTRODUCTION

A fundamental goal of undergraduate computer science
programs is that graduates be able to design software sys-
tems. This paper will show that this goal is not being met:
many students are either unable, or do not properly under-
stand what it means to design a software system. We pro-
vide evidence for this finding, offer some explanations why
this might be so, and suggest ways that these shortcomings
might be addressed.

This research is based on written designs produced by
near-graduating seniors, students presumably preparing to

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut

Storrs, CT 06269 USA

robert@cse.uconn.edu

Jan Erik Mostrom
Department of Computing
Science
Umea University
901 87 Umed, Sweden

jem@cs.umu.se

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA, USA

zander@u.washington.edu

work professionally. These designs were collected under strin-
gent interview conditions as part of a larger study, the “scaf-
folding” experiment: a multi-national, multi-institutional
project that looked at the approach students take to soft-
ware design.

2. BACKGROUND

Many academics share the opinion that their students’
learning of software development is not as effective as it
should be. This is evidenced by an international review of
first year students’ programming skills led by McCracken [5],
an often cited example that reports student successful per-
formance in a coding exercise at only 20%. Whilst there has
been much research over the years into student coding [7],
there is far less available on design. Although we recognize
that many other approaches such as Agile Methodologies
are now being used to teach software design, recent work by
McCracken [6] highlights the poor correspondence between
traditional techniques and the cognitive thought processes
required when developing software.

Design is recognized to be a difficult topic to comprehend,
and as shown by Cross[3], success does seem to require a
certain level of cognitive development. Few students reach
the highest level where they really appreciate that design
principles are context dependent, potentially because they
lack sufficient practical experience.

3. THE “SCAFFOLDING” EXPERIMENT

The “scaffolding” experiment[1, 2, 9] was a multi-national,
multi-institutional study that looked at several aspects of
software design. It included 314 subjects from 21 institu-
tions in the US, UK, Sweden, and New Zealand. As shown
in Table 1, the subjects were drawn from three pools rang-

Permission to make digital or hard copies of all or part of this work for ing from first competency (students who could be expected
personal or classroom use is granted without fee provided that copies areto program at least one problem from the set proposed by
not made or distributed for profit or commercial advantage and that copies McCracken et al.), graduating seniors, and educators.

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SIGCSE’06March 1-5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/000355.00.

For the design task, subjects were given a one-page “de-
sign brief” (Figure 1) that described the behavior of the
desired system: a “super alarm clock” for college students.
Subjects were given as much time as they wanted to per-

Table 1: Number of subjects in scaffolding study

Type of subjects Number
First competency students 136
Graduating seniors 150
Educators 28

Design Brief

Getting People to Sleep

In some circles sleep deprivation has become a status symbol. Statements like “I pulled
another all-nighter” and “I've slept only three hours in the last two days” are shared with
pride, as listeners nod in admiration. Although celebrating self-deprivation has historical
roots and is not likely to go away soon, it's troubling when an educated culture rewards
people for hurting themselves, and that includes missing sleep.

As Stanford sleep experts have stated, sleep deprivation is one of the leading health
problems in the modern world. People with high levels of sleep debt get sick more often,
have more difficulties in personal relationships, and are less productive and creative. The
negative effects of sleep debt go on and on. In short, when you have too much sleep debt,
you simply can't enjoy life fully.

Your brief is to design a "super alarm clock” for University students to help them to
manage their own sleep patterns, and also to provide data to support a research project
into the extent of the problem in this community. You may assume that, for the prototype,
each student will have a Pocket PC (or similar device) which is permanently connected to a
network.

Your system will need to:

« Allow a student to set an alarm to wake themselves up.

Allow a student to set an alarm to remind themselves to go to sleep.

Record when a student tells the system that they are about to go to sleep.

« Record when a student tells the system that they have woken up, and whether it is
due to an alarm or not (within 2 minutes of an alarm going off).

« Make recommendations as to when a student needs to go to sleep. This should
include "yellow alerts" when the student will need sleep soon, and “red alerts" when
they need to sleep now.

« Store the collected data in a server or database for later analysis by researchers.
The server/database system (which will also trigger the yellow/red alerts) will be
designed and implemented by another team. You should, however, indicate in your
design the behaviour you expect from the back-end system.

« Report students who are becoming dangerously sleep-deprived to someone who
cares about them (their mother?). This is indicated by a student being given three
“red alerts" in a row.

* Provide reports to a student showing their sleep patterns over time, allowing them to
see how often they have ignored alarms, and to identify clusters of dangerous, or
beneficial, sleep behaviour.

In doing this you should (1) produce an initial solution that someone (not necessarily you)
could work from (2) divide your solution into not less than two and not more than ten parts,
giving each a name and adding a short description of what it is and what it does — in short,
why it is a part. If important to your design, you may indicate an order to the parts, or add
some additional detail as to how the parts fit together.

Figure 1: The design brief given to the subjects

form this task during which they could ask questions of the
researcher.

The original study reported significant trends between the
groups as they advanced from first-competency to graduat-
ing seniors to educators: increasing use of standard graphi-
cal representations and decreasing use of text-only descrip-
tions; increased representation of interactions among parts;
and increased recognition of ambiguity.

The focus of this study is quite different: how do students
design when they are at the end of an undergraduate com-
puting program? To address this question, we undertook a
detailed examination of the design artifacts produced by the
graduating seniors group.

4. CATEGORIZATION METHODS

The goal of the present study was to examine students’
abilities to design software, using their written designs as the
primary data. To organize and simplify this data for analy-
sis, we categorized them into groups of similar designs. We
chose a data-driven approach for this categorization, with
the intention that the categories reflect similarities that we

Nothing This category has designs with little or no intel-
ligible content. These tend to be very short, typically
a single unlabeled diagram.

Restatement These are designs that merely restate re-
quirements from the task description (Figure 1). A
typical example is a list of functions that correspond
to the bulleted items in that description. These have
no design content other than that stated in the de-
scription.

Skumtomte' These are designs that add a small amount
to restating the task. Some subjects added a small
amount of information in text, or gave a drawing of a
simple GUI with no description of its design, or some
unimportant implementation details. There is no over-
all system view, nor is there any significant work on
any of the modules.

First step Designs in this category include some significant
work beyond the description: either a partial overview
of the system (identifying the parts, but generally not
identifying how they are related in the system) or the
design of one of the system’s components, such as the
GUI or the interface to the database.

Partial design A partial design provides an understand-
able description of each of the parts and an overview
of the system that illustrates the relationships between
the parts. The descriptions of the parts may be incom-
plete or superficial and the communication between
the parts is not completely described.

Complete design These designs show a well-developed so-
lution, including an understandable overview, part de-
scriptions that include responsibilities, and explicit
communication between the parts. A typical example
uses multiple formal notations (e.g., UML, Use cases,
CRC cards) as well as text.

Figure 2: The six categories used for design artifacts

observed in the data. We grouped designs based on their
semantics, that is what they communicate rather than how,
together with the extent to which the design met the stated
requirement that “someone (not necessarily you) could work
from.”

Based on this approach, after a number of refinements, we
identified six categories of designs, shown in Figure 2.

These category descriptions included a general definition
and to help to clarify ambiguous designs, referred to a typical
prototype, one of the designs in the dataset. This provided
a mechanism for dealing with “fuzzy” boundary cases that
might otherwise have been difficult to categorize.

The process of developing the categories and then assign-
ing the designs was data-driven and integrated—both the
category descriptions and the previous design assignments
evolved as the category assignment (tagging) progressed.

The Swedish word Skumtomte refers to a pink-and-white
marshmallow Santa Claus, a traditional Christmas confec-
tion. It looks like there is something there, but it is only
shaped and colored marshmallow fluff.

4.1 Comparison with other studies

After developing and refining these categories, we consid-
ered them relative to relevant computer science education
research.

DuBoulay [4] comments on novice programmers’ inability
to grasp the whole program and its constituent parts: “This
ability to see a program as a whole, understand its main
parts and their relation is a skill which grows only gradu-
ally.”. This is in line with our conclusions that overview of
the parts and relations between parts are important charac-
teristics found only in the more advanced designs.

Soloway et al. [8] discuss how to teach design. Based on a
study with expert software designers the authors advocate
five phases in developing a design. The summarized phases
are

e Phase 1: Understand problem specification. The goal
here is simply to understand what the problem is ask-
ing for.

Phase 2: Decompose problem into programmable goals
and objects. During this phase, the objective is to
“lay the components of the solution on the table”, that
is, decompose the problem and identify the solution
components.

Phase 3: Select and compose plans to solve problems.
During this phase the pieces of the solution are wo-
ven together, that is, the components are composed to
form a working whole.

Phase 4: Implement plans in language constructs.

Phase 5: Reflect—Fvaluate final artifact and overall de-
stgn process. When all is said and done, a good strat-
egy is to look back over what has been done and learn
from both the successes and failures.

It is interesting to compare Soloway’s phases with the
data driven classification in this study. Soloway’s first phase
can be directly mapped to our Restatement and Skumtomte
groups where the designs indicate that the students were
trying to understand the problem. It is worth noting that
the majority of the designs did not progress past the first of
Soloway’s phases.

The second phase, to “lay the components of the solution
on the table,” we interpret as getting an overview of the
solution. The overview sometimes occurs in the First step
solutions, but is always found in our two top categories.
These designs show an understanding of the problem and
display the components of the solution.

In the third phase, “the pieces of the solution are wo-
ven together.” This assumes that both the responsibilities
and relations (connections and communications) among the
parts are determined, things which are part of the top two
categories in our study.

The fourth and fifth phases, implementation and evalua-
tion, are not within the scope of the task given in our study.
However, there were examples of code fragments or other
implementation decisions (fourth phase), found in all cate-
gories except Nothing, with particularly strong evidence in
the Skumtomte and First step design categories. There were
also designs in the top groups that showed reflection and
evaluation of their solutions, and so illustrated Soloway’s
fifth phase.

50% 1

41%

40% +

30% A

20% A

10% A

0%
Noy, Re, N
%//;9 Stage,
g

Figure 3: Frequencies of observations in each of the
design categories (based on 149 observations)

Soloway et al. describe the phases as “activities” and that
“there may be (will be!) some jumping around — back and
forth” based on the results from the study with the expert
designers. This agrees with our design data. We do not see
a monotonic progression through the phases in the written
designs and we see traces of many of these phases throughout
the documents.

5. RESULTS AND OBSERVATIONS

The overall performance is illustrated by the frequency
plot shown in Figure 3. On the whole, this is quite negative:

e 21% of the designs were simply restatements of the
specification or less—no value added at all.

e 41% of the designs were Skumtomte: those that added
an insignificant amount beyond the specification, and,
in particular, did not produce any “design content.”

e 29% of the designs were in the First step category,

showing some progress toward a design—a partial overview,

or significant progress toward the design of one part of
the system.

e 9% produced “reasonable” designs (Partial design or
Complete): those including an understandable system
architecture, with parts and their interactions explic-
itly stated. Of these, less than a third produced Com-
plete designs, with explicit part responsibilities and
inter-part communications.

All in all, a poor performance from students who are near
graduation: over 20% produced nothing, and over 60% com-
municated no significant progress toward a design.

Having categorized the designs, however, we can examine
some questions more closely. Specifically, are there other
factors that correlate with design performance such as age,
gender, academic record, and time spent on the design task?
We consider these below.

5.1 Correlation with other factors

As part of the overall study, we collected academic and de-
mographic background data on the students and made other
observations during the design task. To further understand
which of these might be related to design performance, we
contrasted these data with the design categories.

45%+
40% +
35%-+
30% +
25%+
20%+
15%
10%

5%

0%-

m Nothing

O Restatement
@ Skumtomte
W First step

O Partial design

@ Complete

Female (percentage)

Male (percentage)

Figure 4: Frequencies per category by gender

Avg time spent

70 - -
Partial design
- /J\l;
Completﬂ

60
55
50 -
45 A
40 A

35 Skumtomte

[

30 A
25
20 A
15

Restatement

Avg number of languages

351 Partial design

Nothing
3 -

Complete I

h
2.5
Skumtomte First step

2 ~

\

Restatement
w

Figure 6: Languages that a students knows “well”

Ang number courses taken

19

Complete

17
Partial design

154 /r
First step

13 4 Skumtomte/r

11— Restatement

1 Nothing /

[@

©

Figure 5: Average time spent on the problem

We summarize the results as follows.

Age. Most participants were in the range 20-27, but other

age groups did not perform better or worse than the
majority.

Gender. Asseen in Figure 4, when the designs were mapped

as a percentage in relation to gender, we observe a
number of differences. The males created all the de-
signs at the extremes, in the Nothing and Complete
design categories. In terms of producing added design
content, females did better with 46% of their designs
in the top three categories, while the males had 36%
of theirs in the top three categories. This difference is
nearly all attributable to the females producing rela-
tively more First step designs, and the males producing
relatively more Skumtomte designs.

Time. If we plot the average time spent on the exercise, we

see that the students who took more time generally
produced better designs (Figure 5).

Number of languages. The number of languages a stu-

dent has used does not seem to affect the result. It
should be noted that this measurement is very crude
since it may include languages that have been used for
a very short amount of time, for example, two hours
of C during a course in electronics.

Familiarity. The students were also asked to indicate their

“familiarity” with the different languages they had used

Figure 7: Average number of CS courses completed

on a scale ranging from 1 (never used) to 5 (have used
a lot). Figure 6 shows that (with the exception of
the Nothing group, which had only five designs), as
the number of “familiar” languages (rated 4 or 5 by
the student) increases, students tend to produce bet-
ter designs.

Number of courses. Figure 7 shows a positive correlation

between the number of CS courses taken and the cate-
gory of the design. More courses could mean a stronger
interest in the subject; it at least indicates more expe-
rience with the material.

Academic grade. Academic performance, as measured by

6.

grade point average for computer science courses, seems
to have little or no relationship to the design produced
as seen in Figure 8. In fact, the students that produced
the best designs had grades that could be classified as
”average.” Many of the top performing students cre-
ated designs that were classified into the groups Re-
statement, Skumtomte, and First step.

IMPLICATIONS FOR EDUCATORS

When the designs were studied in detail and categorized,
we found that certain features characterize the more ad-
vanced designs: an overview, details on part responsibilities,
and communication between the parts.

An overview is of great importance for a good understand-
ing of the design produced. The design brief explicitly stated

60% -

50%
fal
<
% 40% 0 Nothing
; 30%1 @ Restatement
& B Skumtomte
& 20%. O First step
= @ Partial design
@ 10% 4 W Complete

0% 4=

Q1(1.6-2.8) Q2(2.9-3.2) Q3(3.3-3.6) Q4(3.7-4.0)

Quartiles

Figure 8: Academic performance

that “someone (not necessarily you)” should be able to work
from the design produced. This idea is closely connected to
Soloway’s description of the first phase of a design, to un-
derstand the problem specification [8]. To decompose the
problem and weave the parts together are more advanced
procedures as pointed out by DuBoulay [4].

Quite significantly, a number of designs in the Skumtomte
and First step groups are long relative to the substance that
they communicate. 55% of the designs in the Skumtomte
group and 67% of the designs in the First step group (the
same number as in the Complete design group) are three
pages or longer. Despite considerable effort put into the
design, these students end up with little. If we could under-
stand what it was that these students were trying to achieve,
we might better understand what they consider significant.

The Skumtomte group neglected both the overview and
communication aspects, but may have been distracted on
unimportant details. Even if the design process is a “jump-
ing back and forth” as pointed out by Soloway et al., a novice
designer still needs to understand what aspects of the design
process belong to an early stage of the process and what can
be delayed.

7. CONCLUSIONS

The results of this study show that the majority of grad-
uating students cannot design a software system. Taking
more courses in computer science seems to improve design
technique, as does having significant experience with more
programming languages. Surprisingly perhaps, academic
performance in general does not indicate how well the stu-
dent can design software. Most of the students in this study
did not seem to understand what sort of information a soft-
ware system design should include, and how that informa-
tion might be communicated.

These results must be taken in context though. In school,
students know what is expected by the course they are in,
and their instructions are usually made to be as clear as
possible. For example, they might be told to produce a
software design document and be given an outline of what
the document is to contain. If a UML class diagram or a
sequence diagram is desired, students are told to produce
these. Can students be expected to produce a solid software
design without explicit instructions when they have not done

so previously? As instructors, we expect students to be able
to take this leap on their own. Perhaps we are wrong, and
should offer students more experience in dealing with under-
specified tasks.

8. ACKNOWLEDGMENTS

The authors would like to thank Sally Fincher, Marian Pe-
tre, Josh Tenenberg, the Scaffolding workshop participants,
and the National Science Foundation (through grants DUE-
0243242 and DUE-0122560) for their support and encour-

agement.

9. REFERENCES

[1] K. Blaha, A. E. Monge, D. Sanders, B. Simon, and
T. VanDeGrift. Do students recognize ambiguity in
software design? a multi-national, multi-institutional
report. In Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005),
pages 615-616, 2005.

[2] T. Chen, S. Cooper, R. McCartney, and
L. Schwartzman. The (relative) importance of software
design criteria. In Proceedings of the 10th Annual
Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2005), pages 34-38, Monte
da Caparica, Portugal, June 2005.

[3] P. Cross. What do we know about students learning
and how do we know it. AAHE National Conference on
Higher Education, 1998.

[4] B. DuBoulay. Some difficulties of learning to program.
Journal of Educational Computing Research,
2(1):57-73, 1986.

[5] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,

D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,

I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. SIGCSE Bulletin,
33(4):125-180, 2001.

[6] W. M. McCracken. Research on learning to design
software. In S. Fincher and M. Petre, editors, Computer
Science Education Research. Taylor and Francis Group,
London, 2004.

[7] A. Robins, J. Rountree, and N. Rountree. Learning and
teaching programming: A review and discussion.
Computer Science Education, 13(2):137 — 172, 2003.

[8] E. Soloway, J. Spohrer, and D. Littman. E unum
pluribus: Generating alternative designs. In R. E.
Mayer, editor, Teaching and Learning Computer
Programming, pages 137-152. Lawrence Erlbaum
Associates, Publishers, 1988.

[9] J. Tenenberg, S. Fincher, K. Blaha, D. Bouvier,

T. Chen, D. Chinn, S. Cooper, A. Eckerdal,

H. Johnson, R. McCartney, A. Monge, J. Mostrém,
M. Petre, K. Powers, M. Ratcliffe, A. Robins,

D. Sanders, L. Shwartzman, B. Simon, C. Stoker,
A. Tew, and T. VanDeGrift. Students designing
software: a multi-national, multi-institutional study.
Informatics in Education, 4(1):143-162, 2005.

