1,532 research outputs found
A vapor barrier for cold testing printed circuit cards
Cold testing method prevents formation of frost on printed circuit boards and part holders during testing at sub-zero temperatures. Freon permits rapid attainment of the required testing temperature
Phase transitions in contagion processes mediated by recurrent mobility patterns
Human mobility and activity patterns mediate contagion on many levels,
including the spatial spread of infectious diseases, diffusion of rumors, and
emergence of consensus. These patterns however are often dominated by specific
locations and recurrent flows and poorly modeled by the random diffusive
dynamics generally used to study them. Here we develop a theoretical framework
to analyze contagion within a network of locations where individuals recall
their geographic origins. We find a phase transition between a regime in which
the contagion affects a large fraction of the system and one in which only a
small fraction is affected. This transition cannot be uncovered by continuous
deterministic models due to the stochastic features of the contagion process
and defines an invasion threshold that depends on mobility parameters,
providing guidance for controlling contagion spread by constraining mobility
processes. We recover the threshold behavior by analyzing diffusion processes
mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary
Information; Nature Physics (2011
Why is it difficult to implement e-health initiatives? A qualitative study
<b>Background</b> The use of information and communication technologies in healthcare is seen as essential for high quality and cost-effective healthcare. However, implementation of e-health initiatives has often been problematic, with many failing to demonstrate predicted benefits. This study aimed to explore and understand the experiences of implementers - the senior managers and other staff charged with implementing e-health initiatives and their assessment of factors which promote or inhibit the successful implementation, embedding, and integration of e-health initiatives.<p></p>
<b>Methods</b> We used a case study methodology, using semi-structured interviews with implementers for data collection. Case studies were selected to provide a range of healthcare contexts (primary, secondary, community care), e-health initiatives, and degrees of normalization. The initiatives studied were Picture Archiving and Communication System (PACS) in secondary care, a Community Nurse Information System (CNIS) in community care, and Choose and Book (C&B) across the primary-secondary care interface. Implementers were selected to provide a range of seniority, including chief executive officers, middle managers, and staff with 'on the ground' experience. Interview data were analyzed using a framework derived from Normalization Process Theory (NPT).<p></p>
<b>Results</b> Twenty-three interviews were completed across the three case studies. There were wide differences in experiences of implementation and embedding across these case studies; these differences were well explained by collective action components of NPT. New technology was most likely to 'normalize' where implementers perceived that it had a positive impact on interactions between professionals and patients and between different professional groups, and fit well with the organisational goals and skill sets of existing staff. However, where implementers perceived problems in one or more of these areas, they also perceived a lower level of normalization.<p></p>
<b>Conclusions</b> Implementers had rich understandings of barriers and facilitators to successful implementation of e-health initiatives, and their views should continue to be sought in future research. NPT can be used to explain observed variations in implementation processes, and may be useful in drawing planners' attention to potential problems with a view to addressing them during implementation planning
Kinesin expands and stabilizes the GDP-microtubule lattice
Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5,6,7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin–microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by ~1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track
Observation of discrete time-crystalline order in a disordered dipolar many-body system
Understanding quantum dynamics away from equilibrium is an outstanding
challenge in the modern physical sciences. It is well known that
out-of-equilibrium systems can display a rich array of phenomena, ranging from
self-organized synchronization to dynamical phase transitions. More recently,
advances in the controlled manipulation of isolated many-body systems have
enabled detailed studies of non-equilibrium phases in strongly interacting
quantum matter. As a particularly striking example, the interplay of periodic
driving, disorder, and strong interactions has recently been predicted to
result in exotic "time-crystalline" phases, which spontaneously break the
discrete time-translation symmetry of the underlying drive. Here, we report the
experimental observation of such discrete time-crystalline order in a driven,
disordered ensemble of dipolar spin impurities in diamond at
room-temperature. We observe long-lived temporal correlations at integer
multiples of the fundamental driving period, experimentally identify the phase
boundary and find that the temporal order is protected by strong interactions;
this order is remarkably stable against perturbations, even in the presence of
slow thermalization. Our work opens the door to exploring dynamical phases of
matter and controlling interacting, disordered many-body systems.Comment: 6 + 3 pages, 4 figure
Carbon Abundances of Three Carbon-Enhanced Metal-Poor Stars from High-Resolution Gemini-S/bHROS Spectra of the 8727A [C I] Line
We present the results from an analysis of the 8727ang forbidden [C I] line
in high-resolution Gemini-S/bHROS spectra of three CEMP stars. We find the
[C/Fe] ratios based on the [C I] abundances of the two most Fe-rich stars in
our sample (HIP 0507-1653: [Fe/H] = -1.42 and HIP 0054-2542: [Fe/H] = -2.66) to
be in good agreement with previously determined CH and C_2 line-based values.
For the most Fe-deficient star in our sample (HIP 1005-1439: [Fe/H] = -3.08),
however, the [C/Fe] ratio is found to be 0.34 dex lower than the published
molecular-based value. We have carried out 3D local thermodynamic equilibrium
(LTE) calculations for [C I], and the resulting corrections are found to be
modest for all three stars, suggesting that the discrepancy between the [C I]
and molecular-based C abundances of HIP 1005-1439 is due to more severe 3D
effects on the molecular lines. Carbon abundances are also derived from C I
high-excitation lines and are found to be 0.45-0.64 dex higher than the [C
I]-based abundances. Previously published non-LTE C I abundance corrections
bring the [C I] and C I abundances into better agreement; however, targeted
NLTE calculations for CEMP stars are clearly needed. We have also derived the
abundances of N, K, and Fe for each star. The Fe abundances agree well with
previously derived values, and the K abundances are similar to those of
C-normal metal-poor stars. Nitrogen abundances have been derived from resolved
lines of the CN red system. The abundances are found to be approximately 0.44
dex larger than literature values, which have been derived from CN blue bands
near 3880 and 4215 ang. We discuss evidence that suggests that analyses of the
CN blue system bands underestimate the N abundances of metal-poor giants.Comment: Accepted for publication in AJ; 42 pages, 6 figures, 7 table
Minimization of phonon-tunneling dissipation in mechanical resonators
Micro- and nanoscale mechanical resonators have recently emerged as
ubiquitous devices for use in advanced technological applications, for example
in mobile communications and inertial sensors, and as novel tools for
fundamental scientific endeavors. Their performance is in many cases limited by
the deleterious effects of mechanical damping. Here, we report a significant
advancement towards understanding and controlling support-induced losses in
generic mechanical resonators. We begin by introducing an efficient numerical
solver, based on the "phonon-tunneling" approach, capable of predicting the
design-limited damping of high-quality mechanical resonators. Further, through
careful device engineering, we isolate support-induced losses and perform the
first rigorous experimental test of the strong geometric dependence of this
loss mechanism. Our results are in excellent agreement with theory,
demonstrating the predictive power of our approach. In combination with recent
progress on complementary dissipation mechanisms, our phonon-tunneling solver
represents a major step towards accurate prediction of the mechanical quality
factor.Comment: 12 pages, 4 figure
Recommended from our members
Exotic states in a simple network of nanoelectromechanical oscillators.
Synchronization of oscillators, a phenomenon found in a wide variety of natural and engineered systems, is typically understood through a reduction to a first-order phase model with simplified dynamics. Here, by exploiting the precision and flexibility of nanoelectromechanical systems, we examined the dynamics of a ring of quasi-sinusoidal oscillators at and beyond first order. Beyond first order, we found exotic states of synchronization with highly complex dynamics, including weak chimeras, decoupled states, traveling waves, and inhomogeneous synchronized states. Through theory and experiment, we show that these exotic states rely on complex interactions emerging out of networks with simple linear nearest-neighbor coupling. This work provides insight into the dynamical richness of complex systems with weak nonlinearities and local interactions
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
- …