397 research outputs found

    A review of tennis racket performance parameters

    Get PDF
    The application of advanced engineering to tennis racket design has influenced the nature of the sport. As a result, the International Tennis Federation has established rules to limit performance, with the aim of protecting the nature of the game. This paper illustrates how changes to the racket affect the player-racket system. The review integrates engineering and biomechanical issues related to tennis racket performance, covering the biomechanical characteristics of tennis strokes, tennis racket performance, the effect of racket parameters on ball rebound and biomechanical interactions. Racket properties influence the rebound of the ball. Ball rebound speed increases with frame stiffness and as string tension decreases. Reducing inter-string contacting forces increases rebound topspin. Historical trends and predictive modelling indicate swingweights of around 0.030–0.035 kg/m2 are best for high ball speed and accuracy. To fully understand the effect of their design changes, engineers should use impact conditions in their experiments, or models, which reflect those of actual tennis strokes. Sports engineers, therefore, benefit from working closely with biomechanists to ensure realistic impact conditions

    Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review

    Get PDF
    Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes. Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane’s ‘risk of bias’ tool. Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs. Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future

    High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes

    Get PDF
    BACKGROUND: African trypanosomes cause lethal diseases in humans and animals and escape host immune attack by switching the expression of Variant Surface Glycoprotein (VSG) genes. The expressed VSGs are located at the ends of telomeric, polycistronic transcription units known as VSG expression sites (VSG-ESs). Each cell has many VSG-ESs but only one is transcribed in bloodstream-form parasites and all of them are inactive upon transmission to the insect vector mid-gut; a subset of monocistronic metacyclic VSG-ESs are then activated in the insect salivary gland. Deep-sequence analyses have been informative but assigning sequences to individual VSG-ESs has been challenging because they each contain closely related expression-site associated genes, or ESAGs, thought to contribute to virulence. RESULTS: We utilised ART, an in silico short read simulator to demonstrate the feasibility of accurately aligning reads to VSG-ESs. Then, using high-resolution transcriptomes from isogenic bloodstream and insect-stage Lister 427 Trypanosoma brucei, we uncover increased abundance in the insect mid-gut stage of mRNAs from metacyclic VSG-ESs and of mRNAs from the unusual ESAG, ESAG10. Further, we show that the silencing associated with allelic exclusion involves repression focussed at the ends of the VSG-ESs. We also use the approach to report relative fitness costs following ESAG RNAi from a genome-scale screen. CONCLUSIONS: By assigning sequences to individual VSG-ESs we provide new insights into VSG-ES transcription control, allelic exclusion and impacts on fitness. Thus, deeper insights into the expression and function of regulated multi-gene families are more accessible than previously anticipated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3154-8) contains supplementary material, which is available to authorized users

    Identification of S100A8-correlated genes for prediction of disease progression in non-muscle invasive bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>S100 calcium binding protein A8 </it>(<it>S100A8</it>) has been implicated as a prognostic indicator in several types of cancer. However, previous studies are limited in their ability to predict the clinical behavior of the cancer. Here, we sought to identify a molecular signature based on <it>S100A8 </it>expression and to assess its usefulness as a prognostic indicator of disease progression in non-muscle invasive bladder cancer (NMIBC).</p> <p>Methods</p> <p>We used 103 primary NMIBC specimens for microarray gene expression profiling. The median follow-up period for all patients was 57.6 months (range: 3.2 to 137.0 months). Various statistical methods, including the leave-one-out cross validation method, were applied to identify a gene expression signature able to predict the likelihood of progression. The prognostic value of the gene expression signature was validated in an independent cohort (n = 302).</p> <p>Results</p> <p>Kaplan-Meier estimates revealed significant differences in disease progression associated with the expression signature of <it>S100A8</it>-correlated genes (log-rank test, <it>P </it>< 0.001). Multivariate Cox regression analysis revealed that the expression signature of <it>S100A8</it>-correlated genes was a strong predictor of disease progression (hazard ratio = 15.225, 95% confidence interval = 1.746 to 133.52, <it>P </it>= 0.014). We validated our results in an independent cohort and confirmed that this signature produced consistent prediction patterns. Finally, gene network analyses of the signature revealed that <it>S100A8</it>, <it>IL1B</it>, and <it>S100A9 </it>could be important mediators of the progression of NMIBC.</p> <p>Conclusions</p> <p>The prognostic molecular signature defined by <it>S100A8</it>-correlated genes represents a promising diagnostic tool for the identification of NMIBC patients that have a high risk of progression to muscle invasive bladder cancer.</p

    A statistical method for excluding non-variable CpG sites in high-throughput DNA methylation profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput DNA methylation arrays are likely to accelerate the pace of methylation biomarker discovery for a wide variety of diseases. A potential problem with a standard set of probes measuring the methylation status of CpG sites across the whole genome is that many sites may not show inter-individual methylation variation among the biosamples for the disease outcome being studied. Inclusion of these so-called "non-variable sites" will increase the risk of false discoveries and reduce statistical power to detect biologically relevant methylation markers.</p> <p>Results</p> <p>We propose a method to estimate the proportion of non-variable CpG sites and eliminate those sites from further analyses. Our method is illustrated using data obtained by hybridizing DNA extracted from the peripheral blood mononuclear cells of 311 samples to an array assaying 1505 CpG sites. Results showed that a large proportion of the CpG sites did not show inter-individual variation in methylation.</p> <p>Conclusions</p> <p>Our method resulted in a substantial improvement in association signals between methylation sites and outcome variables while controlling the false discovery rate at the same level.</p

    Selenoproteins Are Essential for Proper Keratinocyte Function and Skin Development

    Get PDF
    Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec). Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp) ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14) expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development

    Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells

    Get PDF
    BACKGROUND: Embryo implantation requires that uterine epithelium develops competence to bind trophoblast to its apical (free) poles. This essential element of uterine receptivity seems to depend on a destabilisation of the apico-basal polarity of endometrial epithelium. Accordingly, a reorganisation of the actin cytoskeleton regulated by the small GTPase RhoA plays an important role in human uterine epithelial RL95-2 cells for binding of human trophoblastoid JAR cells. We now obtained new insight into trophoblast binding using human uterine epithelial Ishikawa cells. METHODS: Polarity of Ishikawa cells was investigated by electron microscopy, apical adhesiveness was tested by adhesion assay. Analyses of subcellular distribution of filamentous actin (F-actin) and RhoA in apical and basal cell poles were performed by confocal laser scanning microscopy (CLSM) with and without binding of JAR spheroids as well as with and without inhibition of small Rho GTPases by Clostridium difficile toxin A (toxin A). In the latter case, subcellular distribution of RhoA was additionally investigated by Western blotting. RESULTS: Ishikawa cells express apical adhesiveness for JAR spheroids and moderate apico-basal polarity. Without contact to JAR spheroids, significantly higher signalling intensities of F-actin and RhoA were found at the basal as compared to the apical poles in Ishikawa cells. RhoA was equally distributed between the membrane fraction and the cytosol fraction. Levels of F-actin and RhoA signals became equalised in the apical and basal regions upon contact to JAR spheroids. After inhibition of Rho GTPases, Ishikawa cells remained adhesive for JAR spheroids, the gradient of fluorescence signals of F-actin and RhoA was maintained while the amount of RhoA was reduced in the cytosolic fraction with a comparable increase in the membrane fraction. CONCLUSION: Ishikawa cells respond to JAR contact as well as to treatment with toxin A with rearrangement of F-actin and small GTPase RhoA but seem to be able to modify signalling pathways in a way not elucidated so far in endometrial cells. This ability may be linked to the degree of polar organisation observed in Ishikawa cells indicating an essential role of cell phenotype modification in apical adhesiveness of uterine epithelium for trophoblast in vivo

    Structural basis of signal sequence surveillance and selection by the SRP–FtsY complex

    Get PDF
    Signal-recognition particle (SRP)-dependent targeting of translating ribosomes to membranes is a multistep quality-control process. Ribosomes that are translating weakly hydrophobic signal sequences can be rejected from the targeting reaction even after they are bound to the SRP. Here we show that the early complex, formed by Escherichia coli SRP and its receptor FtsY with ribosomes translating the incorrect cargo EspP, is unstable and rearranges inefficiently into subsequent conformational states, such that FtsY dissociation is favored over successful targeting. The N-terminal extension of EspP is responsible for these defects in the early targeting complex. The cryo-electron microscopy structure of this 'false' early complex with EspP revealed an ordered M domain of SRP protein Ffh making two ribosomal contacts, and the NG domains of Ffh and FtsY forming a distorted, flexible heterodimer. Our results provide a structural basis for SRP-mediated signal-sequence selection during recruitment of the SRP receptor
    • …
    corecore