667 research outputs found

    Carbon Abundances of Three Carbon-Enhanced Metal-Poor Stars from High-Resolution Gemini-S/bHROS Spectra of the 8727A [C I] Line

    Full text link
    We present the results from an analysis of the 8727ang forbidden [C I] line in high-resolution Gemini-S/bHROS spectra of three CEMP stars. We find the [C/Fe] ratios based on the [C I] abundances of the two most Fe-rich stars in our sample (HIP 0507-1653: [Fe/H] = -1.42 and HIP 0054-2542: [Fe/H] = -2.66) to be in good agreement with previously determined CH and C_2 line-based values. For the most Fe-deficient star in our sample (HIP 1005-1439: [Fe/H] = -3.08), however, the [C/Fe] ratio is found to be 0.34 dex lower than the published molecular-based value. We have carried out 3D local thermodynamic equilibrium (LTE) calculations for [C I], and the resulting corrections are found to be modest for all three stars, suggesting that the discrepancy between the [C I] and molecular-based C abundances of HIP 1005-1439 is due to more severe 3D effects on the molecular lines. Carbon abundances are also derived from C I high-excitation lines and are found to be 0.45-0.64 dex higher than the [C I]-based abundances. Previously published non-LTE C I abundance corrections bring the [C I] and C I abundances into better agreement; however, targeted NLTE calculations for CEMP stars are clearly needed. We have also derived the abundances of N, K, and Fe for each star. The Fe abundances agree well with previously derived values, and the K abundances are similar to those of C-normal metal-poor stars. Nitrogen abundances have been derived from resolved lines of the CN red system. The abundances are found to be approximately 0.44 dex larger than literature values, which have been derived from CN blue bands near 3880 and 4215 ang. We discuss evidence that suggests that analyses of the CN blue system bands underestimate the N abundances of metal-poor giants.Comment: Accepted for publication in AJ; 42 pages, 6 figures, 7 table

    Landmine injuries at the Emergency Management Center in Erbil, Iraq

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Landmines can cause death, injury and disability in addition to many indirect public health consequences. This study aimed at understanding the trends, demography and other epidemiological characteristics of hospitalized landmine injured patients in Erbil governorate.</p> <p>Methods</p> <p>The case records of landmine injured patients who had been admitted to the Emergency Management Centre in Erbil city from July 1998 to July 2007 were reviewed and descriptively analyzed.</p> <p>Results</p> <p>Two hundred eighty five landmine injured patients were admitted to the center, their mean ± SD age was 26.5 ± 13.2 years (range 6-71 years), 95.1% were males, nearly 50% were between 19 to 35 years of age and 96.8% were civilians. Around 72% of victims sustained limb amputations; 58.6% lower limb and 13.3% upper limb out of the total. The hospital mortality rate was 2.1%. The number of admissions for landmine injury was steadily decreasing between July 1998 and July 2001, followed by prominent increase between July 2002 and July 2003. The highest proportion of admissions occurred in summer (35.4%) and majority of incidents occurred along the borders with Iran and Turkey (61.8%).</p> <p>Conclusion</p> <p>Civilian male adolescents and young adults constituted the majority of hospitalized landmine victims in Erbil governorate. While a high proportion of victims sustained lower limb amputations, upper limb amputations particularly among children and injury to head and face were relatively common which might be attributed to handling explosives. This emphasizes the need to examine the reasons behind handling explosives.</p

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.&lt;p&gt;&lt;/p&gt; Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).&lt;p&gt;&lt;/p&gt; Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.&lt;p&gt;&lt;/p&gt; Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73.

    Get PDF
    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology

    Sialyl Residues Modulate LPS-Mediated Signaling through the Toll-Like Receptor 4 Complex

    Get PDF
    We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    corecore