26,694 research outputs found
Implementing a resource list management system in an academic library
Purpose – The purpose of this paper is to review the key components of the introduction of a new resource list management system (RLMS) at Nottingham Trent University (NTU) using the Aspire application from Talis Education. It explains the key service goals; the implementation milestones; the main technical challenges which needed to be addressed; and the dynamic relationship between the rollout of the RLMS and existing selection, acquisition and resource delivery processes
Providing Basic Needs and Encouragement as Strategies in Managing Aggression in Dementia Clients
Purpose: The experiences of caregivers in managing dementia clients with aggressive behaviour have been an issue in nursing homes. This study utilized the fact that there is no significant strategy for managing aggression effectively. The aim of the study is to explore the experiences of caregivers in managing dementia clients with aggressive behaviour in nursing home in Jakarta, Indonesia.Method: This study employed a hermeneutic phenomenological approach so that caregivers were able to explore the phenomenon of aggression by dementia residents in the nursing home. Six experienced caregivers were interviewed in this study to uncover caregivers\u27 strategies they use in managing aggression in dementia residents.Result: The findings in this study were several strategies that have been used by caregivers to manage aggressive behaviour among dementia residents in the nursing home: providing basic needs and encouragement.Conclusion: The findings suggested caregivers to implement the strategies for managing aggression in dementia residents. Due to a limited number of related studies in Indonesia, this study recommended for further research to other nursing homes in Indonesia to determine if other strategies to manage aggression exist
A vapor barrier for cold testing printed circuit cards
Cold testing method prevents formation of frost on printed circuit boards and part holders during testing at sub-zero temperatures. Freon permits rapid attainment of the required testing temperature
Dual pathway spindle assembly increases both the speed and the fidelity of mitosis
Roughly half of all animal somatic cell spindles assemble by the classical prophase pathway, in which the centrosomes separate ahead of nuclear envelope breakdown (NEBD). The remainder assemble by the prometaphase pathway, in which the centrosomes separate following NEBD. Why cells use dual pathway spindle assembly is unclear. Here, by examining the timing of NEBD relative to the onset of Eg5-mEGFP loading to centrosomes, we show that a time window of 9.2 ± 2.9 min is available for Eg5-driven prophase centrosome separation ahead of NEBD, and that those cells that succeed in separating their centrosomes within this window subsequently show .3-fold fewer chromosome segregation errors and a somewhat faster mitosis. A longer time window would allow more cells to complete prophase centrosome separation and further reduce segregation errors, but at the expense of a slower mitosis. Our data reveal dual pathway mitosis in a new light, as a substantive strategy that increases both the speed and the fidelity of mitosis
Pinning control of spatiotemporal chaos
Linear control theory is used to develop an improved localized control scheme for spatially extended chaotic systems, which is applied to a coupled map lattice as an example. The optimal arrangement of the control sites is shown to depend on the symmetry properties of the system, while their minimal density depends on the strength of noise in the system. The method is shown to work in any region of parameter space and requires a significantly smaller number of controllers compared to the method proposed earlier by Hu and Qu [Phys. Rev. Lett. 72, 68 (1994)]. A nonlinear generalization of the method for a 1D lattice is also presented
Does "thin client" mean "energy efficient"?
The thick client –a personal computer with integral disk storage and local processing capability, which also has access to data and other resources via a network connection – is accepted as the model for providing computing resource in most office environments. The Further and Higher Education sector is no exception to that, and therefore most academic and administrative offices are equipped with desktop computers of this form to support users in their day to day tasks. This system structure has a number of advantages: there is a reduced reliance on network resources; users access a system appropriate to their needs, and may customise “their” system to meet their own personal requirements and working patterns. However it also has disadvantages: some are outside the scope of this project, but of most relevance to the green IT agenda is the fact that relatively complex and expensive (in first cost and in running cost) desktop systems and servers are underutilised – especially in respect of processing power. While some savings are achieved through use of “sleep” modes and similar power reducing mechanisms, in most configurations only a small portion of the overall total available processor resource is utilised. This realisation has led to the promotion of an alternative paradigm, the thin client. In a thin client system, the desktop is shorn of most of its local processing and data storage capability, and essentially acts as a terminal to the server, which now takes on responsibility for data storage and processing. The energy benefit is derived through resource sharing: the processor of the server does the work, and because that processor is shared by all users, a number of users are supported by a single system. Therefore – according to proponents of thin client – the total energy required to support a user group is reduced, since a shared physical resource is used more efficiently. These claims are widely reported: indeed there are a number of estimation tools which show these savings can be achieved; however there appears to be little or no actual measured data to confirm this. The community does not appear to have access to measured data comparing thin and thick client systems in operation in the same situation, allowing direct comparisons to be drawn. This is the main goal of this project. One specific question relates to the overall power use, while it would seem to be obvious that the thin client would require less electricity, what of the server? Two other variations are also considered: it is not uncommon for thin client deployments to continue to use their existing PCs as thin client workstations, with or without modification. Also, attempts by PC makers to reduce the power requirements of their products have given rise to a further variation: the incorporation of low power features in otherwise standard PC technology, working as thick clients. This project was devised to conduct actual measurements in use in a typical university environment. We identified a test area: a mixed administrative and academic office location which supported a range of users, and we made a direct replacement of the current thick client systems with thin client equivalents; in addition, we exchanged a number of PCs operating in thin and thick client mode with devices specifically branded as “low power” PCs and measured their power requirements in both thin and thick modes. We measured the energy consumption at each desktop for the duration of our experiments, and also measured the energy draw of the server designated to supporting the thin client setup, giving us the opportunity to determine the power per user of each technology. Our results show a significant difference in power use between the various candidate technologies, and that a configuration of low power PC in thick client mode returned the lowest power use during our study. We were also aware of other factors surrounding a change such as this: we have addressed the technical issues of implementation and management, and the non-technical or human factors of acceptance and use: all are reported within this document. Finally, our project is necessarily limited to a set of experiments carried out in a particular situation, therefore we use estimation methods to draw wider conclusions and make general observations which should allow others to select appropriate thick or thin client solutions in their situation
- …
