1,140 research outputs found

    VLT/FORS2 observations of the optical counterpart of the isolated neutron star RBS 1774

    Full text link
    X-ray observations performed with ROSAT led to the discovery of a group (seven to date) of X-ray dim and radio-silent middle-aged isolated neutron stars (a.k.a. XDINSs), which are characterised by pure blackbody spectra (kT~40-100 eV), long X-ray pulsations (P=3-12 s), and appear to be endowed with relatively high magnetic fields, (B~10d13-14 G). RBS 1774 is one of the few XDINSs with a candidate optical counterpart, which we discovered with the VLT. We performed deep observations of RBS 1774 in the R band with the VLT to disentangle a non-thermal power-law spectrum from a Rayleigh-Jeans, whose contributions are expected to be very much different in the red part of the spectrum. We did not detect the RBS 1774 candidate counterpart down to a 3 sigma limiting magnitude of R~27. The constraint on its colour, (B-R)<0.6, rules out that it is a background object, positionally coincident with the X-ray source. Our R-band upper limit is consistent with the extrapolation of the B-band flux (assuming a 3 sigma uncertainty) for a set of power-laws F_nu ~nu^alpha with spectral indeces alpha<0.07. If the optical spectrum of RBS 1774 were non-thermal, its power-law slope would be very much unlike those of all isolated neutron stars with non-thermal optical emission, suggesting that it is most likely thermal. For instance, a Rayleigh-Jeans with temperature T_O = 11 eV, for an optically emitting radius r_O=15 km and a source distance d=150 pc, would be consistent with the optical measurements. The implied low distance is compatible with the 0.04 X-ray pulsed fraction if either the star spin axis is nearly aligned with the magnetic axis or with the line of sight, or it is slightly misaligned with respect to both the magnetic axis and the line of sight by 5-10 degreesComment: 8 pages, 8 postscript figures, accepted for publication in Astronomy & Astrophysic

    A Detection of an Anti-correlated Hard X-ray Lag in AM Herculis

    Get PDF
    Context {Earlier cross-correlation studies for AM Her were performed in various energy range from optical to X-ray and suggested that it mostly shows a high level of correlation but on occasion it shows a low level of correlation or uncorrelation.} Aims {To investigate the degree of correlation between soft (2-4 keV) and hard (9-20 keV) X-rays, we perform the cross-correlation study of the X-ray data sets of AM Her obtained with {\it RXTE}.} Methods {We cross-correlate the background-subtracted soft and hard X-ray light curves using the XRONOS program crosscor and fit a model to the obtained cross-correlation functions.} Results {We detect a hard X-ray lag of 192±33192\pm33 s in a specific section of energy-dependent light curve, where the soft X-ray (2-4 keV) intensity decreases but the hard X-ray (9-20 keV) intensity increases. From a spectral analysis, we find that the X-ray emission temperature increases during the anti-correlated intensity variation. In two other observations, the cross-correlation functions show a low level of correlation, which is consistent with the earlier results performed in a different energy range.} Conclusions {We report a detection of an anti-correlated hard X-ray lag of ∼\sim190 s from the proto-type polar AM Her. The hard X-ray lag is detected for the first time in the given energy range, and it is the longest lag among those reported in magnetic cataclysmic variables. We discuss the implications of our findings regarding the origin of the hard X-ray lag and the anti-correlated intensity variation.}Comment: Accepted in A&A, 4 page

    Assessment and Monitoring of Grazing Lands in the Northeastern United States

    Get PDF
    The Pasture Condition Score System (Cosgrove et al., 2001) was developed as a monitoring and management tool on grazing lands The system considers 10 indicators of soils, plants, and animals including percent desirable plants, plant cover, plant diversity, plant residue, plant vigor, percent legume, uniformity of use, livestock concentration areas, soil compaction, and soil erosion. The indicators are assigned a score according to detailed criteria and the scores are summed to give an overall score for a pasture, or relevant grazing unit. The score is then interpreted, indicating if some type of management change or treatment is necessary. We tested the Pasture Condition Score system on farms across the northeast USA

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging

    An alternative model of the magnetic cataclysmic variable V1432 Aquilae (=RX J1940.1-1025)

    Get PDF
    V1432 Aql is currently considered to be an asynchronous AM Her type system, with an orbital period of 12116.3 s and a spin period of 12150 s. I present an alternative model in which V1432 Aql is an intermediate polar with disk overflow or diskless accretion geometry, with a spin period near 4040 s. I argue that published data are insufficient to distinguish between the two models; instead, I provide a series of predictions of the two models that can be tested against future observations.Comment: 10 pages LaTeX including 3 Postscript Figures, to be published in Ap

    Why do some intermediate polars show soft X-ray emission? A survey of XMM-Newton spectra

    Full text link
    We make a systematic analysis of the XMM-Newton X-ray spectra of intermediate polars (IPs) and find that, contrary to the traditional picture, most show a soft blackbody component. We compare the results with those from AM Her stars and deduce that the blackbody emission arises from reprocessing of hard X-rays, rather than from the blobby accretion sometimes seen in AM Hers. Whether an IP shows a blackbody component appears to depend primarily on geometric factors: a blackbody is not seen in those that have accretion footprints that are always obscured by accretion curtains or are only visible when foreshortened on the white-dwarf limb. Thus we argue against previous suggestions that the blackbody emission characterises a separate sub-group of IPs which are more akin to AM Hers, and develop a unified picture of the blackbody emission in these stars.Comment: 9 pages, 6 figures. Accepted for publication in Ap

    V405 Aurigae: A High Magnetic Field Intermediate Polar

    Full text link
    Our simultaneous multicolor (UBVRI) circular polarimetry has revealed nearly sinusoidal variation over the WD spin cycle, and almost symmetric positive and negative polarization excursions. Maximum amplitudes are observed in the B and V bands (+-3 %). This is the first time that polarization peaking in the blue has been discovered in an IP, and suggests that V405 Aur is the highest magnetic field IP found so far. The polarized flux spectrum is similar to those found in polars with magnetic fields in the range B ~ 25-50 MG. Our low resolution circular spectropolarimetry has given evidence of transient features which can be fitted by cyclotron harmonics n = 6, 7, and 8, at a field of B = 31.5 +- 0.8 MG, consistent with the broad-band polarized flux spectrum. Timings of the circular polarization zero crossovers put strict upper limits on WD spin period changes and indicate that the WD in V405 Aur is currently accreting closely at the spin equilibrium rate, with very long synchronization timescales, T_s > 10^9 yr. For the observed spin to orbital period ratio, P_{spin}/P_{orb} = 0.0365, and P_{orb} ~ 4.15 hr, existing numerical accretion models predict spin equilibrium condition with B ~ 30 MG if the mass ratio of the binary components is q_1 ~ 0.4. The high magnetic field makes V405 Aur a likely candidate as a progenitor of a polar.Comment: To appear in The Astrophysical Journal, September 1 Issue (2008), 9 pages, 10 figure

    An Optical Counterpart Candidate for the Isolated Neutron Star RBS 1774

    Get PDF
    Multiwavelength studies of the seven identified X-ray-dim isolated neutron stars (XDINSs) offer a unique opportunity to investigate their surface thermal and magnetic structure and the matter-radiation interaction in presence of strong gravitational and magnetic fields. As a part of an ongoing campaign aimed at a complete identification and spectral characterization of XDINSs in the optical band, we performed deep imaging with the ESO Very Large Telescope (VLT) of the field of the XDINS RBS 1774 (1RXS J214303.7 +065419). The recently upgraded FORS1 instrument mounted on the VLT provided the very first detection of a candidate optical counterpart in the B band. The identification is based on a very good positional coincidence with the X-ray source (chance probability ~2 7 10 123). The source has B = 27.4 \ub1 0.2 (1 \u3c3 confidence level), and the optical flux exceeds the extrapolation of the X-ray blackbody at optical wavelengths by a factor ~35 (\ub120 at 3 \u3c3 confidence level). This is barely compatible with thermal emission from the neutron star surface, unless the source distance is d 200\u2013300 pc, and the star is an almost aligned rotator or its spin axis is nearly aligned with the line of sight. At the same time, such a large optical excess appears difficult to reconcile with rotation-powered magnetospheric emission, unless the source has an extremely large optical emission efficiency. The implications and possible similarities with the optical spectra of other isolated NSs are discussed

    The continued spectral and temporal evolution of RX J0720.4-3125

    Get PDF
    RX J0720.4-3125 is the most peculiar object among a group of seven isolated X-ray pulsars (the so-called "Magnificent Seven"), since it shows long-term variations of its spectral and temporal properties on time scales of years. This behaviour was explained by different authors either by free precession (with a seven or fourteen years period) or possibly a glitch that occurred around MJD=52866±73days\mathrm{MJD=52866\pm73 days}. We analysed our most recent XMM-Newton and Chandra observations in order to further monitor the behaviour of this neutron star. With the new data sets, the timing behaviour of RX J0720.4-3125 suggests a single (sudden) event (e.g. a glitch) rather than a cyclic pattern as expected by free precession. The spectral parameters changed significantly around the proposed glitch time, but more gradual variations occurred already before the (putative) event. Since MJD≈53000days\mathrm{MJD\approx53000 days} the spectra indicate a very slow cooling by ∼\sim2 eV over 7 years.Comment: seven pages, three figures, three tables; accepted by MNRA

    Multi-epoch Doppler tomography and polarimetry of QQ Vul

    Get PDF
    We present multi-epoch high-resolution spectroscopy and photoelectric polarimetry of the long-period polar (AM Herculis star) QQ Vul. The blue emission lines show several distinct components, the sharpest of which can unequivocally be assigned to the illuminated hemisphere of the secondary star and used to trace its orbital motion. This narrow emission line can be used in combination with Nai-absorption lines from the photosphere of the companion to build a stable long-term ephemeris for the star: inferior conjunction of the companion occurs at HJD = 244 8446.4710(5)+E×0. d 15452011(11). The polarization curves are dissimilar at different epochs, thus supporting the idea of fundamental changes of the accretion geometry, e.g. between one- and two-pole accretion modes. The linear polarization pulses display a random scatter by 0.2 phase units and are not suitable for the determination of the binary period. The polarization data suggest that the magnetic (dipolar) axis has a co-latitude of 23 ◦ , an azimuth of −50 ◦, and an orbital inclination between 50 ◦ and 70 ◦. Doppler images of blue emission and red absorption lines show a clear separatio
    • …
    corecore