37 research outputs found

    TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine

    Get PDF
    AbstractExogenous brain-derived neurotrophic factor (BDNF) can regulate behavioral sensitization and conditioned place preference (CPP) when animals are exposed to repeated cocaine administration. However, it is unclear whether BDNF signaling through the TrkB receptor can mediate these behavioral responses when animals are given a single cocaine exposure. Because TrkB knockout mice die as neonates, we engineered a transgenic mouse that expressed a dominant negative form of TrkB (dnTrkB) in a conditional and reversible manner. We assessed also activation of endogenous TrkB by quantifying levels of phosphorylated TrkB (p-TrkB) in the nucleus accumbens (NAc). We found that a single exposure to cocaine was sufficient to increase p-TrkB within the NAc 9–12h after administration. Expression of the dnTrkB transgene not only prevented the acute cocaine-induced increase in p-TrkB, but it also prevented behavioral sensitization and CPP following a single cocaine injection. These findings demonstrate that TrkB activation is required both for behavioral sensitization and CPP to a single cocaine exposure. The fact that enhanced TrkB activation is induced within 9h of a single injection of cocaine suggests that inhibition of TrkB signaling commencing hours after cocaine exposure may prevent at least the initial antecedents to the sensitizing and reinforcing effects of this psychostimulant

    A semiquantitative metric for evaluating clinical actionability of incidental or secondary findings from genome-scale sequencing

    Get PDF
    As genome-scale sequencing is increasingly applied in clinical scenarios, a wide variety of genomic findings will be discovered as secondary or incidental findings, and there is debate about how they should be handled. The clinical actionability of such findings varies, necessitating standardized frameworks for a priori decision making about their analysis

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma

    Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma

    Get PDF
    Abstract Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normalpressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the .06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGFbeta signaling could be effective for multiple forms of glaucoma

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Genome-Wide Linkage Scan for Primary Open Angle Glaucoma: Influences of Ancestry and Age at Diagnosis

    Get PDF
    Primary open-angle glaucoma (POAG) is the most common form of glaucoma and one of the leading causes of vision loss worldwide. The genetic etiology of POAG is complex and poorly understood. The purpose of this work is to identify genomic regions of interest linked to POAG. This study is the largest genetic linkage study of POAG performed to date: genomic DNA samples from 786 subjects (538 Caucasian ancestry, 248 African ancestry) were genotyped using either the Illumina GoldenGate Linkage 4 Panel or the Illumina Infinium Human Linkage-12 Panel. A total of 5233 SNPs was analyzed in 134 multiplex POAG families (89 Caucasian ancestry, 45 African ancestry). Parametric and non-parametric linkage analyses were performed on the overall dataset and within race-specific datasets (Caucasian ancestry and African ancestry). Ordered subset analysis was used to stratify the data on the basis of age of glaucoma diagnosis. Novel linkage regions were identified on chromosomes 1 and 20, and two previously described loci—GLC1D on chromosome 8 and GLC1I on chromosome 15—were replicated. These data will prove valuable in the context of interpreting results from genome-wid

    A Curriculum for Genomic Education of Molecular Genetic Pathology Fellows:A Report of the Association for Molecular Pathology Training and Education Committee.

    No full text
    Molecular Genetic Pathology (MGP) is a subspecialty of Pathology and Medical Genetics and Genomics. Genomic testing, which we define as that which generates large datasets and interrogates large segments of the genome in a single assay, is increasingly recognized as essential for optimal patient care through precision medicine. The most common genomic testing technologies in clinical laboratories are next-generation sequencing and microarray. It is essential to train in these methods and to consider the data generated in the context of the diagnosis, medical history, and other clinical findings of individual patients. Accordingly, updating the MGP fellowship curriculum to include genomics is timely, important, and challenging. At the completion of training, an MGP fellow should be capable of independently interpreting and signing out results of a wide range of genomic assays and, given the appropriate context and institutional support, of developing and validating new assays in compliance with applicable regulations. The Genomics Task Force of the MGP Program Directors, a working group of the Association for Molecular Pathology (AMP) Training and Education Committee, has developed a genomics curriculum framework and recommendations specific to the MGP fellowship. These recommendations are presented for consideration and implementation by MGP fellowship programs with the understanding that MGP programs exist in a diversity of clinical practice environments with a spectrum of available resources
    corecore