12 research outputs found

    Plant communities of the upper Murrumbidgee catchment in New South Wales and the Australian Capital Territory

    Get PDF
    Native vegetation of the upper Murrumbidgee catchment in southeast NSW and the Australian Capital-Territory (ACT) was classified into 75 plant communities across 18 NSW Vegetation Classes within nine Structural-Formations. Plant communities were derived through numerical analysis of 4,106 field survey plots including 3,787-plots from 58 existing survey datasets and 319 new plots, which were sampled in under surveyed ecosystems. All plant-communities are described at a level appropriate for discrimination of threatened ecological communities and distinct-vegetation mapping units. The classification describes plant communities in the context of the upper Murrumbidgee catchment and surrounding-landscapes of similar ecological character. It incorporates and, in some instances, refines identification of plant-communities described in previous classifications of alpine vegetation, forest ecosystems, woodlands and grasslands-across the Australian Alps and South Eastern Highlands within the upper Murrumbidgee catchment. Altitude,-precipitation, soil saturation, lithology, slope, aspect and landscape position were all important factors in guiding-plant community associations. Nine Threatened Ecological Communities under Commonwealth, NSW and ACT legislation occur in the upper-Murrumbidgee catchment. This study has also identified five additional plant communities which are highly restricted-in distribution and may require active management or protection to ensure their survival

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Unmet need for hypercholesterolemia care in 35 low- and middle-income countries: A cross-sectional study of nationally representative surveys.

    Get PDF
    As the prevalence of hypercholesterolemia is increasing in low- and middle-income countries (LMICs), detailed evidence is urgently needed to guide the response of health systems to this epidemic. This study sought to quantify unmet need for hypercholesterolemia care among adults in 35 LMICs. We pooled individual-level data from 129,040 respondents aged 15 years and older from 35 nationally representative surveys conducted between 2009 and 2018. Hypercholesterolemia care was quantified using cascade of care analyses in the pooled sample and by region, country income group, and country. Hypercholesterolemia was defined as (i) total cholesterol (TC) ≥240 mg/dL or self-reported lipid-lowering medication use and, alternatively, as (ii) low-density lipoprotein cholesterol (LDL-C) ≥160 mg/dL or self-reported lipid-lowering medication use. Stages of the care cascade for hypercholesterolemia were defined as follows: screened (prior to the survey), aware of diagnosis, treated (lifestyle advice and/or medication), and controlled (TC <200 mg/dL or LDL-C <130 mg/dL). We further estimated how age, sex, education, body mass index (BMI), current smoking, having diabetes, and having hypertension are associated with cascade progression using modified Poisson regression models with survey fixed effects. High TC prevalence was 7.1% (95% CI: 6.8% to 7.4%), and high LDL-C prevalence was 7.5% (95% CI: 7.1% to 7.9%). The cascade analysis showed that 43% (95% CI: 40% to 45%) of study participants with high TC and 47% (95% CI: 44% to 50%) with high LDL-C ever had their cholesterol measured prior to the survey. About 31% (95% CI: 29% to 33%) and 36% (95% CI: 33% to 38%) were aware of their diagnosis; 29% (95% CI: 28% to 31%) and 33% (95% CI: 31% to 36%) were treated; 7% (95% CI: 6% to 9%) and 19% (95% CI: 18% to 21%) were controlled. We found substantial heterogeneity in cascade performance across countries and higher performances in upper-middle-income countries and the Eastern Mediterranean, Europe, and Americas. Lipid screening was significantly associated with older age, female sex, higher education, higher BMI, comorbid diagnosis of diabetes, and comorbid diagnosis of hypertension. Awareness of diagnosis was significantly associated with older age, higher BMI, comorbid diagnosis of diabetes, and comorbid diagnosis of hypertension. Lastly, treatment of hypercholesterolemia was significantly associated with comorbid hypertension and diabetes, and control of lipid measures with comorbid diabetes. The main limitations of this study are a potential recall bias in self-reported information on received health services as well as diminished comparability due to varying survey years and varying lipid guideline application across country and clinical settings. Cascade performance was poor across all stages, indicating large unmet need for hypercholesterolemia care in this sample of LMICs-calling for greater policy and research attention toward this cardiovascular disease (CVD) risk factor and highlighting opportunities for improved prevention of CVD

    Diabetes Prevalence and Its Relationship With Education, Wealth, and BMI in 29 Low- and Middle-Income Countries.

    No full text
    Diabetes is a rapidly growing health problem in low- and middle-income countries (LMICs), but empirical data on its prevalence and relationship to socioeconomic status are scarce. We estimated diabetes prevalence and the subset with undiagnosed diabetes in 29 LMICs and evaluated the relationship of education, household wealth, and BMI with diabetes risk. We pooled individual-level data from 29 nationally representative surveys conducted between 2008 and 2016, totaling 588,574 participants aged ≥25 years. Diabetes prevalence and the subset with undiagnosed diabetes was calculated overall and by country, World Bank income group (WBIG), and geographic region. Multivariable Poisson regression models were used to estimate relative risk (RR). Overall, prevalence of diabetes in 29 LMICs was 7.5% (95% CI 7.1-8.0) and of undiagnosed diabetes 4.9% (4.6-5.3). Diabetes prevalence increased with increasing WBIG: countries with low-income economies (LICs) 6.7% (5.5-8.1), lower-middle-income economies (LMIs) 7.1% (6.6-7.6), and upper-middle-income economies (UMIs) 8.2% (7.5-9.0). Compared with no formal education, greater educational attainment was associated with an increased risk of diabetes across WBIGs, after adjusting for BMI (LICs RR 1.47 [95% CI 1.22-1.78], LMIs 1.14 [1.06-1.23], and UMIs 1.28 [1.02-1.61]). Among 29 LMICs, diabetes prevalence was substantial and increased with increasing WBIG. In contrast to the association seen in high-income countries, diabetes risk was highest among those with greater educational attainment, independent of BMI. LMICs included in this analysis may be at an advanced stage in the nutrition transition but with no reversal in the socioeconomic gradient of diabetes risk

    Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults.

    No full text
    The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings. In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA <sub>1c</sub> ]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA <sub>1c</sub> of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5-22·9 kg/m <sup>2</sup> ], upper-normal [23·0-24·9 kg/m <sup>2</sup> ], overweight [25·0-29·9 kg/m <sup>2</sup> ], or obese [≥30·0 kg/m <sup>2</sup> ]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region. Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6-27·8), of obesity was 21·0% (19·6-22·5), and of diabetes was 9·3% (8·4-10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m <sup>2</sup> or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5-22·9 kg/m <sup>2</sup> . Diabetes risk also increased steeply in individuals aged 35-44 years and in men aged 25-34 years in sub-Saharan Africa. In the stratified analyses, there was considerable regional variability in this association. Optimal BMI thresholds for diabetes screening ranged from 23·8 kg/m <sup>2</sup> among men in east, south, and southeast Asia to 28·3 kg/m <sup>2</sup> among women in the Middle East and north Africa and in Latin America and the Caribbean. The association between BMI and diabetes risk in LMICs is subject to substantial regional variability. Diabetes risk is greater at lower BMI thresholds and at younger ages than reflected in currently used BMI cutoffs for assessing diabetes risk. These findings offer an important insight to inform context-specific diabetes screening guidelines. Harvard T H Chan School of Public Health McLennan Fund: Dean's Challenge Grant Program

    Data Resource Profile: The Global Health and Population Project on Access to Care for Cardiometabolic Diseases (HPACC).

    Get PDF
    [No abstract available]ach STEPS survey is co-funded by the country’s government and the WHO. DHS are co-funded by the United States Agency for International Development (USAID) and the respective country’s government. The funding of the other surveys are mostly co-funded by a country’s government, universities and international organizations, and sometimes supported by local sponsors. The creation of the final collated data set has been funded by the Harvard McLennan Family Fund and the Alexander von Humboldt Foundation as well as institutional funds from the Universities of Heidelberg and Göttingen
    corecore