206 research outputs found

    Short-Time Velocity Identification and Coherent-Like Detection of Ultrahigh Speed Targets

    Get PDF
    Finding a balance between observation duration and detection rates is the ultimate goal of the detection of ultrahigh speed targets. However, short observation durations, both across range unit, and Doppler frequency migration, may severely limit the detection performance of ultrahigh speed targets. Although, traditional coherent integration methods can efficiently accumulate signal energy to produce a high signal-to-noise-ratio measurement, they often need to search for unknown motion parameters. This search is time consuming and unacceptable for the real-time detection of ultrahigh speed targets. In this paper, a coherent-like detection method is designed based on the finite-dimension theory of Wigner matrices along with velocity identification. The proposed method can efficiently integrate signal energy without rendering motion parameters. We use the distribution and mean of the eigenvalues of the constructed matrix, i.e., an additive Wigner matrix, to identify velocities and detect ultrahigh speed targets, respectively. Simulation results validate the theoretical derivation, superiority and operability of the proposed method

    Measurements of integral muon intensity at large zenith angles

    Get PDF
    High-statistics data on near-horizontal muons collected with Russian-Italian coordinate detector DECOR are analyzed. Precise measurements of muon angular distributions in zenith angle interval from 60 to 90 degrees have been performed. In total, more than 20 million muons are selected. Dependences of the absolute integral muon intensity on zenith angle for several threshold energies ranging from 1.7 GeV to 7.2 GeV are derived. Results for this region of zenith angles and threshold energies have been obtained for the first time. The dependence of integral intensity on zenith angle and threshold energy is well fitted by a simple analytical formula.Comment: 4 pages, 4 figures, 1 tabl

    Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Journal of The Royal Society Interface 6 (2010): 549-560, doi:10.1098/rsif.2009.0299.Many cephalopods exhibit remarkable dermal iridescence, a component of their complex, dynamic camouflage and communication. In the species Euprymna scolopes, the light-organ iridescence is static and is due to reflectin protein-based platelets assembled into lamellar thin-film reflectors called iridosomes, contained within iridescent cells called iridocytes. Squid in the family Loliginidae appear to be unique in that the dermis possesses a dynamic iridescent component, with reflective, colored structures that are assembled and disassembled under the control of the muscarinic cholinergic system and the associated neurotransmitter acetylcholine (Mathger et al. 2004). Here we present the sequences and characterization of three new members of the reflectin family associated with the dynamically changeable iridescence in Loligo and not found in static Euprymna iridophores. In addition, we show that application of genistein, a protein tyrosine kinase inhibitor, suppresses acetylcholine- and calcium-induced iridescence in Loligo. We further demonstrate that two of these novel reflectins are extensively phosphorylated in concert with the activation of iridescence by exogenous acetylcholine. This phosphorylation and the correlated iridescence can be blocked with genistein. Our results suggest that tyrosine phosphorylation of reflectin proteins is involved in the regulation of dynamic iridescence in Loligo.We gratefully acknowledge support from Anteon contract F33615-03-D-5408 to the Marine Biological Laboratory, Woods Hole, MA and grant # W911NF-06-1-0285 from the Army Research Office to D.E.M

    Atmospheric Muon Flux at Sea Level, Underground, and Underwater

    Get PDF
    The vertical sea-level muon spectrum at energies above 1 GeV and the underground/underwater muon intensities at depths up to 18 km w.e. are calculated. The results are particularly collated with a great body of the ground-level, underground, and underwater muon data. In the hadron-cascade calculations, the growth with energy of inelastic cross sections and pion, kaon, and nucleon generation in pion-nucleus collisions are taken into account. For evaluating the prompt muon contribution to the muon flux, we apply two phenomenological approaches to the charm production problem: the recombination quark-parton model and the quark-gluon string model. To solve the muon transport equation at large depths of homogeneous medium, a semi-analytical method is used. The simple fitting formulas describing our numerical results are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially all underground data on the muon intensity correlate with each other and with predicted depth-intensity relation for conventional muons to within 10%. However, the high-energy sea-level data as well as the data at large depths are contradictory and cannot be quantitatively decribed by a single nuclear-cascade model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data and references added, typos correcte

    New coil concept for endoluminal MR imaging: Initial results in staging of gastric carcinoma in correlation with Histopathology

    Get PDF
    Our aim was to conduct a prospective study to evaluate staging accuracy of a new coil concept for endoluminal magnetic resonance imaging (MRI) on ex vivo gastric carcinomas. Twenty-eight consecutive patients referred to surgery with a clinically proven primary gastric malignancy were included. Surgical specimens were examined with a foldable and self-expanding loop coil (8-cm diameter) at 1.5 Tesla immediately after total gastrectomy. T1- and T2-weighted and opposed-phase sequences (axial, frontal sections; 3- to 4-mm slice thickness) were acquired. Investigators blinded to any patient information analyzed signal intensity of normal gastric wall, gastric tumor, and lymph nodes. Findings were compared with histopathological staging. On surgical specimens, 2–5 gastric wall layers could be visualized. All gastric tumors (26 carcinomas, two lymphomas) were identified on endoluminal MR data (100%). Overall accuracy for T staging was 75% (18/24); sensitivity to detect serosal involvement was 80% and specificity 89%. N staging correlated in 58% (14/24) with histopathology (N+ versus N−). The endoluminal coil concept is feasible and applicable for an ex vivo setting. Endoluminal MR data provided sufficient detail for gastric wall layer differentiation, and therefore, identification of T stages in gastric carcinoma is possible. Further investigations in in vivo settings should explore the potential of our coil concept for endoluminal MR imaging

    Towards a consolidation of worldwide journal rankings - A classification using random forests and aggregate rating via data envelopment analysis

    Get PDF
    AbstractThe question of how to assess research outputs published in journals is now a global concern for academics. Numerous journal ratings and rankings exist, some featuring perceptual and peer-review-based journal ranks, some focusing on objective information related to citations, some using a combination of the two. This research consolidates existing journal rankings into an up-to-date and comprehensive list. Existing approaches to determining journal rankings are significantly advanced with the application of a new classification approach, ‘random forests’, and data envelopment analysis. As a result, a fresh look at a publication׳s place in the global research community is offered. While our approach is applicable to all management and business journals, we specifically exemplify the relative position of ‘operations research, management science, production and operations management’ journals within the broader management field, as well as within their own subject domain

    A Controversy That Has Been Tough to Swallow: Is the Treatment of Achalasia Now Digested?

    Get PDF
    Esophageal achalasia is a rare neurodegenerative disease of the esophagus and the lower esophageal sphincter that presents within a spectrum of disease severity related to progressive pathological changes, most commonly resulting in dysphagia. The pathophysiology of achalasia is still incompletely understood, but recent evidence suggests that degeneration of the postganglionic inhibitory nerves of the myenteric plexus could be due to an infectious or autoimmune mechanism, and nitric oxide is the neurotransmitter affected. Current treatment of achalasia is directed at palliation of symptoms. Therapies include pharmacological therapy, endoscopic injection of botulinum toxin, endoscopic dilation, and surgery. Until the late 1980s, endoscopic dilation was the first line of therapy. The advent of safe and effective minimally invasive surgical techniques in the early 1990s paved the way for the introduction of laparoscopic myotomy. This review will discuss the most up-to-date information regarding the pathophysiology, diagnosis, and treatment of achalasia, including a historical perspective. The laparoscopic Heller myotomy with partial fundoplication performed at an experienced center is currently the first line of therapy because it offers a low complication rate, the most durable symptom relief, and the lowest incidence of postoperative gastroesophageal reflux
    corecore