6 research outputs found

    Aggression in substance use treatment seekers

    No full text
    Recent evidence suggests that the relationship between substance use and aggression is more complicated than previously proposed, which may vary by drug type and a combination of physiological, environmental and individual differences. The present, cross-sectional study investigated differences in aggression and its relationship with schizotypal personality traits, negative emotional states (depression, anxiety, and stress) and coping style, in a sample of 104 patients with substance use disorder (SUD) and non-drug using control subjects (n = 57). The SUD group reported higher levels of physical aggression, anger, and hostility than the controls, which were positively correlated with schizotypal traits (i.e., impulsive nonconformity), negative emotional states and emotional coping style. Impulsive nonconformity appeared as the most influential factor in aggression, which is directly related to both physical and verbal aggression, and influenced anger and hostility, through emotional coping and negative emotional states, i.e., depression

    Mental stress recognition on the fly using neuroplasticity spiking neural networks

    No full text
    Abstract Mental stress is found to be strongly connected with human cognition and wellbeing. As the complexities of human life increase, the effects of mental stress have impacted human health and cognitive performance across the globe. This highlights the need for effective non-invasive stress detection methods. In this work, we introduce a novel, artificial spiking neural network model called Online Neuroplasticity Spiking Neural Network (O-NSNN) that utilizes a repertoire of learning concepts inspired by the brain to classify mental stress using Electroencephalogram (EEG) data. These models are personalized and tested on EEG data recorded during sessions in which participants listen to different types of audio comments designed to induce acute stress. Our O-NSNN models learn on the fly producing an average accuracy of 90.76% (σ = 2.09) when classifying EEG signals of brain states associated with these audio comments. The brain-inspired nature of the individual models makes them robust and efficient and has the potential to be integrated into wearable technology. Furthermore, this article presents an exploratory analysis of trained O-NSNNs to discover links between perceived and acute mental stress. The O-NSNN algorithm proved to be better for personalized stress recognition in terms of accuracy, efficiency, and model interpretability

    Multicohort cross-sectional study of cognitive and behavioural digital biomarkers in neurodegeneration: the Living Lab Study protocol

    No full text
    Introduction and aims Digital biomarkers can provide a cost-effective, objective and robust measure for neurological disease progression, changes in care needs and the effect of interventions. Motor function, physiology and behaviour can provide informative measures of neurological conditions and neurodegenerative decline. New digital technologies present an opportunity to provide remote, high-frequency monitoring of patients from within their homes. The purpose of the living lab study is to develop novel digital biomarkers of functional impairment in those living with neurodegenerative disease (NDD) and neurological conditions.Methods and analysis The Living Lab study is a cross-sectional observational study of cognition and behaviour in people living with NDDs and other, non-degenerative neurological conditions. Patients (n≥25 for each patient group) with dementia, Parkinson’s disease, amyotrophic lateral sclerosis, mild cognitive impairment, traumatic brain injury and stroke along with controls (n≥60) will be pragmatically recruited. Patients will carry out activities of daily living and functional assessments within the Living Lab. The Living Lab is an apartment-laboratory containing a functional kitchen, bathroom, bed and living area to provide a controlled environment to develop novel digital biomarkers. The Living Lab provides an important intermediary stage between the conventional laboratory and the home. Multiple passive environmental sensors, internet-enabled medical devices, wearables and electroencephalography (EEG) will be used to characterise functional impairments of NDDs and non-NDD conditions. We will also relate these digital technology measures to clinical and cognitive outcomes.Ethics and dissemination Ethical approvals have been granted by the Imperial College Research Ethics Committee (reference number: 21IC6992). Results from the study will be disseminated at conferences and within peer-reviewed journals

    Using home monitoring technology to study the effects of traumatic brain injury on older multimorbid adults: protocol for a feasibility study

    No full text
    Introduction The prevalence of traumatic brain injury (TBI) among older adults is increasing exponentially. The sequelae can be severe in older adults and interact with age-related conditions such as multimorbidity. Despite this, TBI research in older adults is sparse. Minder, an in-home monitoring system developed by the UK Dementia Research Institute Centre for Care Research and Technology, uses infrared sensors and a bed mat to passively collect sleep and activity data. Similar systems have been used to monitor the health of older adults living with dementia. We will assess the feasibility of using this system to study changes in the health status of older adults in the early period post-TBI.Methods and analysis The study will recruit 15 inpatients (>60 years) with a moderate-severe TBI, who will have their daily activity and sleep patterns monitored using passive and wearable sensors over 6 months. Participants will report on their health during weekly calls, which will be used to validate sensor data. Physical, functional and cognitive assessments will be conducted across the duration of the study. Activity levels and sleep patterns derived from sensor data will be calculated and visualised using activity maps. Within-participant analysis will be performed to determine if participants are deviating from their own routines. We will apply machine learning approaches to activity and sleep data to assess whether the changes in these data can predict clinical events. Qualitative analysis of interviews conducted with participants, carers and clinical staff will assess acceptability and utility of the system.Ethics and dissemination Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (REC) (REC number: 17/LO/2066). Results will be submitted for publication in peer-reviewed journals, presented at conferences and inform the design of a larger trial assessing recovery after TBI
    corecore