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Abstract
Prospective memory (PM, the memory of future intentions) is one of the first complaints of those that develop dementia-
related disease. Little is known about the neurophysiology of PM in ageing and those with mild cognitive impairment (MCI). 
By using a novel artificial neural network to investigate the spatial and temporal features of PM related brain activity, new 
insights can be uncovered. Young adults (n = 30), healthy older adults (n = 39) and older adults with MCI (n = 27) completed 
a working memory and two PM (perceptual, conceptual) tasks. Time-locked electroencephalographic potentials (ERPs) from 
128-electrodes were analysed using a brain-inspired spiking neural network (SNN) architecture. Local and global connectivity 
from the SNNs was then evaluated. SNNs outperformed other machine learning methods in classification of brain activity 
between younger, older and older adults with MCI. SNNs trained using PM related brain activity had better classification 
accuracy than working memory related brain activity. In general, younger adults exhibited greater local cluster connectiv-
ity compared to both older adult groups. Older adults with MCI demonstrated decreased global connectivity in response 
to working memory and perceptual PM tasks but increased connectivity in the conceptual PM models relative to younger 
and healthy older adults. SNNs can provide a useful method for differentiating between those with and without MCI. Using 
brain activity related to PM in combination with SNNs may provide a sensitive biomarker for detecting cognitive decline. 
Cognitively demanding tasks may increase the amount connectivity in older adults with MCI as a means of compensation.

Keywords Spiking neural network · Mild cognitive impairment · Ageing · Machine learning · Event-related potential · 
Prospective memory

Introduction

Mild cognitive impairment (MCI) represents an intermedi-
ary stage between typical ageing and dementia [1]. Individu-
als meeting the criteria for MCI are ten times more likely 
to develop Alzheimer’s disease than those without MCI 
[2]. While there are currently no cures for dementia-related 

diseases, understanding early neurophysiological differ-
ences between those experiencing cognitive decline and 
healthy ageing may offer useful ways to evaluate the effi-
cacy of interventions. Cognitive domains such as executive 
function and attention have been extensively investigated in 
MCI [3, 4]. However, prospective memory (PM) is posited 
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as a sensitive early biomarker for those at risk of dementia-
related disease [5].

Prospective memory is the ability to remember to perform 
an action at a future point in time (e.g. remembering to take 
a medication at the correct time) [6]. PM constitutes a large 
part of everyday memory [7] and everyday memory failures 
[8]. The ubiquity of PM underpinning many activities of 
daily living is, therefore, an essential feature of autonomy. 
Often, PM is one of the first patient-reported complaints to 
family members or health professionals [9] and is subse-
quently of clinical relevance.

Little is known about the neurophysiology of prospective 
memory (PM) in healthy older adults and older adults expe-
riencing mild cognitive impairment (MCI). Neurocognitive 
research has particularly implicated the anterior prefrontal 
cortex (aPFC) in PM function, demonstrating the importance 
of the aPFC in PM encoding, maintenance, and retrieval 
[10, 11]. Concerning PM intention retrieval, cortical areas 
such as the insula, posterior cingulate cortex (PCC), and 
medial temporal lobe (MTL) are of particular importance 
[12]. These areas, and connections between them, are found 
to be impaired in older adults with MCI [13, 14].

Electroencephalography (EEG) signals that are time-
locked to the presentation of a stimulus or behaviour are 
known as event-related potentials (ERPs). ERPs provide 
high temporal resolution of underlying cortical activity [15]. 
It is understood that there are co-occurrences of the N300 
ERP (300–500 ms) over the posterior scalp regions and the 
frontal positivity in anterior cortices [16], related to cue 
detection. A late parietal positivity complex (600–1200 ms), 
known as the prospective positivity, is related to the retrieval 
of the PM intention from memory [17]. ERP differences 
between young and older adults are routinely reported in PM 
[11, 17, 18]; however, only one previous study has evaluated 
neurophysiological differences in older adults with MCI sug-
gesting poorer PM performance is due to early processing 
deficits in stimulus familiarity and the ability to reorient 
attention [19].

Past studies have provided important insights into under-
standing PM in ageing and cognitive decline. However, most 
extant analytical techniques create models by separately 
processing spatial and temporal information. For ERP data, 
this is problematic as the temporal component may display 
complex interactions that dynamically alter over time [20]. 
Recent developments in artificial intelligence allow us to 
overcome this limitation through models that can learn 
changes in temporal information over time while preserv-
ing the spatial relationship of the data. The third generation 
of artificial neural networks, known as spiking neural net-
works (SNN), can model spatiotemporal interactions with 
spatiotemporal brain data (STBD) in a biologically plausible 
way [21]. The application of SNNs to dimensionally high 
STBD has proved to be an effective way of modelling and 

extracting knowledge from a variety of data sets that possess 
time and space qualities [21]. Previous studies have proven 
the efficacy of SNN modelling in fMRI [22], EEG resting-
state [23] and ERP data [20, 24], enabling multidimensional 
learning, which can be interpreted through 3D visualisation, 
pattern recognition and classification.

Aims and Hypotheses

The current study aims to build on the SNN methodologies 
for modelling the spatiotemporal dynamics of ERP data. 
The study proposes new approaches for modelling, learn-
ing, visualising and extracting knowledge from ERP data 
related to working memory, PM and cognitive decline. The 
study aims to explore and further understand the spatiotem-
poral and functional differences between younger, older and 
older adults with MCI. Through the machine learning func-
tionally of SNNs, this study will evaluate the efficacy of 
using PM as an early indicator of cognitive decline in older 
adults. For the most part, classification studies of MCI have 
used resting-state EEG data [25]. However, little research 
has evaluated the ability to classify brain activity of indi-
viduals with and without MCI when performing those tasks 
most relevant to their diagnosis, namely memory. Evaluating 
cognitive aspects of memory may be more effective than 
using resting-state or structural MRI data for classification 
of individuals with MCI [26]. By comparing the neurocogni-
tive functioning of individuals performing working memory 
and PM tasks, the current study will determine which of 
these aspects of cognition is more effective in differentiat-
ing between the groups. It would be expected that given 
PM is one of the first cognitive complaints of those who 
go on to develop MCI [9], one would expect to find greater 
classification accuracy for PM stimuli. The current study is 
broken down into two experiments: firstly, ERP responses to 
working memory and PM will be modelled and classification 
accuracies evaluated; secondly, using statistical methods, as 
demonstrated in previous research [27], new knowledge of 
local (intra-region) and global (inter-region) connectivity 
will be extracted from the SNN models.

To this end, the current study hypothesises that (1) there 
will be differences in visualised SNNs between young adults, 
older adults and older adults with MCI. (2) SNNs will pro-
vide better classification accuracy between the groups when 
modelling responses to PM stimuli relative to working mem-
ory stimuli, and (3) SNNs will have superior classification 
accuracy compared to traditional machine learning methods. 
(4) There will be differences in local and global connectivity 
between young and older adults, and older adults with MCI 
will have decreased levels of connectivity at the local and 
global level.
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Methods

Participants

Thirty young adults (YA; 13 females, mean age = 24.7 years, 
SD = 3.43), thirty-nine typically ageing older adults (OA; 
24 females, mean age = 72.87, SD = 4.18) and twenty-seven 
older adults with a diagnosis of MCI (MCI, 12 females; mean 
age = 77.54, SD = 6.49) were recruited for the study. All par-
ticipants were right-handed and had no history of dyslexia, no 
history of drug or alcohol abuse and fluent in English. Older 
adults with a diagnosis of MCI were referred via memory 
assessment clinics or through Join Dementia Research. All par-
ticipants completed the Hopkins verbal Learning Test-Revised 
(HVLT-R) [28] to ensure that individuals were not likely to 
have Alzheimer’s disease or experiencing MCI if part of the 
healthy ageing group. Participants also completed the geriatric 
depression scale [29] to ensure symptoms of depression did not 
confound the results. The study was approved by the Health 
Research Authority, UK (REC reference: 17/EM/1010).

Procedure

Participants were sat approximately 60 cm from an LCD 
monitor. EEG equipment was attached before imped-
ance checks were made. Participants firstly completed 

an ongoing-only working memory task before completing 
two PM tasks. The two PM tasks built upon the ongo-
ing task with the PM cues embedded within the stream 
of ongoing task stimuli (Fig. 1). Participants, therefore, 
completed the PM task and the ongoing task simultane-
ously. PM instructions were given at the start of the task 
and were followed by a delay before the first PM cue 
appeared. In line with past research [30], only 10% of all 
stimuli were PM cues allowing participants to re-engage 
with the ongoing stimuli and better simulate real-life PM 
events.

Ongoing Task

A 1-back word categorisation task was used as the ongo-
ing task (Fig. 1a). Participants made continuous decisions 
of whether the word presented is of the same category as a 
preceding word. Participants were instructed to press a but-
ton on a response box with the right index finger if the word 
was semantically related to the previous word. The ongoing 
task compromised 300 stimuli from the category norm data 
base [31] with a 25% chance of a word belong to the same 
semantic category as the previous category. Each word was 
presented for 500 ms with a 2-s stimulus onset asynchrony 
between words. Stimuli requiring a response during the 
ongoing task will be referred to as a 1-backtarget.

Fig. 1  Experimental prospective memory (PM) paradigm. a The 
1-back (ongoing-only) word categorisation task. Arrow direction 
indicates the evaluation of stimulus in relation to the previous word. 
Related words are those which are from the same category as the pre-
vious word and require a response. Unrelated words are those that 

did not belong to the same category as the previous word and did 
not require a response. b The embedded prospective memory tasks. 
Examples of the perceptual and conceptual prospective memory cues 
are highlighted with grey bars
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Prospective Memory Task

The PM paradigm (Fig. 1b) incorporates two PM condi-
tions: perceptual and conceptual, where perceptual relates 
to visual features of the cue which prompts a PM response 
and conceptual relates to a semantic cue that is less salient 
than perceptual cues and therefore requires greater attention 
to remember. Participants were instructed to press a button 
with their right index finger when a word was of the same 
semantic category (ongoing task) and to press another button 
with their left index finger if there was a PM cue. For the 
perceptual PM condition  (PMpercept), participants were told 
to respond to words appearing in capitals (e.g. ‘SWORD’). 
For the conceptual PM condition  (PMconcept), participants 
were told to respond to the word of four-footed animals (e.g. 
‘cat’). Each PM task contained 600 stimuli 10% of which 
were pseudo-randomly presented PM stimuli.

Electrophysiological Recording and Processing

Electroencephalographic activity was recorded with a 
128-channel Active Two Acquisition system (BioSemi, 
Amsterdam, Netherlands) sampling at 2048 Hz. Data were 
collected using ActiView V6.05 (National Instruments, 
TX, USA). EEG preprocessing was performed in MAT-
LAB R2019a (The Mathwords, Inc) using custom scripts 
and EEGLAB. Data was referenced to linked mastoids and 
downsampled to 256 Hz. A high-pass finite impulse filter 
(FIR) was applied at 0.01 Hz and a low-pass FIR filter at 
35 Hz. Line noise was removed using CleanLine. Independ-
ent components (runica analysis) were visually inspected 
and artefacts were rejected. ERP epochs were 1000 ms from 
stimulus onset with a baseline correction.

Spiking Neural Network Computational Architecture 
for Modelling and Visualising Working Memory 
and Prospective Memory Activity

The proposed SNN architecture is an evolving spatiotem-
poral data machine (eSTDM) modelled on neuromorphic, 
brain-inspired SNN processing concepts [32]. It is designed 
to map brain data into a 3D brain space of spiking artificial 
neurons (AN) while preserving the topological information 
of the recorded brain activity. Principally, this architecture 
draws its inspiration from the biological rules (e.g. small-
world (SW) connectivity and leaky-integrate and fire models 
(LIFM)), which govern memory learning dynamics of neu-
rons exhibited within the brain.

Each AN within the SNN behaves as an information-
processing unit. It learns from the temporal data that is 
propagated through it, adapting and memorising the pat-
terns of activity by influencing the interconnected neurons 
within the network. Akin to the brain, SNNs incorporate 

time into their computation and thus are superior in biologi-
cal plausibility compared to previous neural networks that 
do not account for temporal dynamics. The architecture to 
be employed processes several different modules based on 
evolving SNN framework [33]. As illustrated in Fig. 2, the 
modules consist of an input-encoder module (Fig. 2d), where 
data is encoded into spike-trains and the spatiotemporal vari-
ables are mapped into input neurons that transfer the spike-
trains to the SNN model; a 3D SNN module (Fig. 2e), where 
the characteristics of space and time are recorded and learnt 
in an unsupervised mode; a visualisation module (Fig. 2f), 
where captured spatiotemporal connectivity of the brain 
can be visualised; a SNN classification module, where the 
spatiotemporal patterns from the 3D SNN module are clas-
sified or used to predict an output (Fig. 2g); an optimisation 
module (Fig. 2h), to fine-tune the parameters of the system; 
a pruner module (Fig. 2i) where inactive ANs are removed 
and only functional ANs (ANs that emitted spikes during the 
unsupervised learning) and neural connections are retained 
for further analysis. The following steps detail the methods 
applied in this study:

1. The temporal data are encoded into sequences of spikes 
using the threshold-based representation algorithm [34].

2. A 3D SNN model of LIFM ANs is created, where 
the spatial mapping of the ANs is defined using the 
Talairach brain template [35].

3. The EEG channels are mapped as input ANs to their 
corresponding location in the Talairach template.

4. The mapped SNN model is initialised, where ANs are con-
nected using the SW connectivity proposed in Braitenberg 
and Schüz [36].

5. The initialised SNN model is trained with the encoded 
spike sequences from ERP data, entering via the input 
ANs. The learning rule is the unsupervised spike-time-
dependent plasticity (STDP) [37] that changes the weight 
of the connection between every pair of connected ANs. 
During this process, the SNN model learns from the tempo-
ral information and forms pathways that can be interpreted, 
which the SNN will use to classify new information.

6. The spike sequences of the EEG data are again propagated 
through the SNN for supervised learning related to the 
classification tasks. Output ANs are created for each sam-
ple (i.e. one output AN for each participant). Each output 
AN is connected to all ANs of the 3D SNN model.

7. The deSNN algorithm is applied for supervised learning 
[38] and adapts the connections between the 3D SNN 
model and the output ANs.

8. For the classification of new temporal data, steps 6 and 
7 are repeated. Then, the data are classified by applying 
the K-nearest neighbours algorithm using the K nearest 
(similar) output ANs created during step 6 to the new 
output AN.
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Input ERP Data Encoding in the SNN Model

The pre-processed and baseline corrected ERP data were 
firstly ordered into a temporal sequence of real-value vec-
tors. These vectors were then encoded into a series of dis-
crete spike-trains using a threshold-based representation 
method (TBR), demonstrated to be able to construct large 
scale networks with arbitrary, configurable synaptic con-
nectivity [39]. This algorithm is employed to identify rel-
evant changes in the ERP signal thus reducing noise. If the 
value of change in the signal surpasses a predefined thresh-
old value, then a spike is encoded. Upward and downward 
changes in the ERP data are interpreted as positive or nega-
tive (1 or − 1) spikes. Bi-directional algorithms like this are 
well suited to EEG data due to their sensitivity to significant 
changes within gradient signal changes.

SNN Initialisation, Mapping, Learning, Classification 
and Visualisation

Following the encoding of the ERP signal to spike-trains 
(Formula 1, Appendix 1), a 3D SNN structure was created 

that can map the functional and structural characteristics of 
the data from which it is recorded. To this end, Talairach 
coordinates [35] were used to map the 128 EEG channels to 
the 3D SNN model (visualised as the green ANs in Fig. 2e. 
These coordinates define the position of the spiking ANs in 
a brain-like SNN model and the position of the EEG elec-
trodes [40] as the input ANs. Each neuron in the network 
then represents one cm3 of the human brain and the entire 
network consists of 1471 ANs [41].

A LIF architecture was used to model the ANs [42] 
(Formula 2, Appendix 1). The SNN was initialised accord-
ing to a biologically plausible model of SW connectivity 
[43], where neurons that are topographically closer possess 
stronger interconnectedness and therefore capture patterns of 
interest from the model. Following completion of the unsu-
pervised learning, a deSNN algorithm [38] was used to train 
an output classifier in a supervised learning method. A RO 
learning rule [44] was applied to initialise the connection 
weights, and then the STDP rule [37] was used to adjust 
these weights according to the spikes that follow the initial 
spikes to the postsynaptic AN (Formula 3, Appendix 1). 
The STDP accounts for the timing of pre and postsynaptic 

Fig. 2  Proposed Spiking Neural Network Architecture for prospec-
tive memory ERP analysis. ERP data collection across the three par-
ticipants groups: a younger, healthy older and older adults with mild 
cognitive impairment. b recording of the data during the experimen-
tal working and prospective memory tasks. c ERP data is extracted 
and cleaned. d cleaned ERP data is transformed into spike-trains. e 
spike-trains for each EEG channel are propagated into a 3D space of 
artificial neurons via the input neurons which are depicted as green 

artificial neurons. f trained SNN can be visualised. g output neurons 
are created and represent the final classification of the data. Each of 
the artificial neuron connects to the output neurons. h a grid search 
method is used to find optimal parameter settings for classifying 
between the participant groups i pruner module removes all connec-
tions which did not change for each group to create sparse models for 
each participant group and are visualised
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action potentials causing automatic adjustments to be made 
to the synaptic strengths and sensitivity of the postsynaptic 
ANs and consequently captures the spatiotemporal dynam-
ics of the input data. Two other important variables for 
the classifier module are mod and drift (Formulas 4 and 5, 
respectively). Each training sample provided to the model 
is associated with an output AN, which is connected to all 
the other ANs in the 3D SNN and the connection weights 
are initially set to zero. The weights of these output ANs 
change as a function of the RO learning rule, which itself is 
calculated by the order of incoming spikes (mod) from dif-
ferent connections. The earlier a spike arrives in the output 
AN from 3D SNN, the greater its importance in increasing 
the corresponding connection weights. In terms of ERP data, 
it is useful to think of this as where the greatest amount of 
emphasis is placed within the ERP (i.e. toward to start or the 
end of the ERP). These newly formed connection weights 
will then increase or decrease according to the following 
number of spikes (drift) when the next spikes arrive at the 
AN over time.

Experimental Framework

To extract the learnt patterns of activity of the SNN mod-
els, computational experiments are performed for each of 
the memory tasks and their class (i.e. participant group). 
Each class contains n samples which are used to train the 
SNN model and are validated through a tenfold cross-val-
idation to assess the accuracy of the model. Once the best 
model is found, then it is possible to extract the individual 
contributions of each of the network classes over epochs of 
interest (200–400 ms, 400–800 ms, 0–1000 ms). After train-
ing, those ANs that did not emit a spike were identified and 
removed (pruned) along with their connections.

Knowledge Extraction from SNN Models

To further extract knowledge from the SNN models from 
the SNN models. Knowledge extraction was performed in 
two ways:

1. ANOVA was applied to test for differences in local con-
nection weights in each of the SNN models as a function 
of group and topography (scalp region).

2. Network analysis was applied to uncover the global 
neurocognitive interactions between the different topo-
graphical areas for each of the SNN models.

The weights of the input ANs (i.e. EEG electrodes) were 
averaged according to the outlined topographical clusters 
depicted in Fig.  3 (Appendix 2), which were informed 
through previous PM ERP research [16, 30, 45, 46]. Aver-
aging the connection weights of the input neurons offers a 

way of understanding differences in local connection weight 
changes between the groups within a specific area. Average 
clusters were created as a means of controlling the num-
ber of comparisons [47, 48] and to capture the mean of the 
AN weight changes within an area connected to input AN. 
Analyses were performed in JASP 0.10.2. A series of mixed 
measures ANOVAs was performed for each of the created 
SNN models. Therefore, each stimulus type at each time 
point (i.e. 200–400, 400–800 and 0–1000) was analysed sep-
arately using a 4 (Cluster: frontal, central, parietal, occipital) 
× 3 (Group: YA, OA, MCI) ANOVA to evaluate group dif-
ferences at midline clusters. For lateral clusters, a 7 (Clus-
ter: frontal, frontocentral, central, frontotemporal, parietal, 
inferior parietal, occipital) × 2 (Hemisphere: left, right) × 3 
(Group: YA, OA, MCI) ANOVA was used to analyse group 
differences in the networks. Post-hoc (linear contrasts) tests 
were used to further explore group differences, and Bonfer-
roni corrections were applied to account for multiple com-
parisons. Partial eta squared was reported for each Group 
effect as an indicator of effect size [49]. Previous research 
has demonstrated the effectiveness of using ANOVAs for 
understanding local intra-region wiring in young adults with 
and without autism spectrum disorder [27, 50].

The averaged connection weights were then used for the 
network analysis to understand global connectivity between 
areas across the cortex at each time frame. The network used 
describes a graphical representation of the correlations 
between each of the clustered weights. In these networks, 
clusters are represented as nodes and the correlations as 
edges connecting/wiring nodes together. The line thickness 
and transparency of the network graph represent the strength 
of the correlation, where thicker edges represent stronger 
correlations. The generated network displays are fixed in 
line with the cluster layout of the scalp map in (e.g. Fig. 10) 
for ease of comparison between groups.

A network model that analyses all possible correlations 
within the network requires the estimation of many param-
eters, including n threshold parameters for the nodes and 
n*(n-1)/2 for pairwise correlations between nodes. Estima-
tions in the current study are equal to 153 parameters. One 
available solution to this problem is to apply the ‘least abso-
lute shrinkage and selection operator’ (LASSO) technique 
[51]. This method enables some edges to shrink to zero and 
be omitted from the model. This is achieved by LASSO 
through the continuous shrinking of coefficients toward 0 
as λ increases. A benefit of applying LASSO is the ability 
to handle more variables than observations [52, 53]. How-
ever, given the high expected correlations between topo-
graphically close variables, i.e. averaged cortical clusters, 
the irrepresentable condition assumption would be violated 
[53]. This assumption requires that variables relevant to the 
model may not be highly correlated with irrelevant vari-
ables. An alternative method proposed by Zou [54], known 
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as ‘adaptive least absolute shrinkage and selection opera-
tor’ (adaLASSO, Formula 6, Appendix 1), can be employed 
to adjust for this violation. While variables are all equally 
penalised with the LASSO method, variables are assigned 
different weights in adaLASSO and can subvert the irrepre-
sentable condition assumption.

The adaLASSO produces a sparse, more conservative 
network model with only a small number of edges enabling 
a more interpretable model of the relationship between node 

weights for each participant group. Prior to analysis, a tuning 
parameter is required to control the level to which the omis-
sion of small correlations is applied. This tuning parameter 
was selected through bootstrapping and was validated using 
cross-validation. The importance of each node in the net-
work was then evaluated through betweenness and degree 
indices. Betweenness provides a measure of the number of 
shortest paths passing through a specific node. A node with 
higher betweenness is said to have more network control as 

Fig. 3  Topographical clusters used for ANOVAs and network analyses. Purple, frontal; green, frontocentral; yellow, central; red, frontotemporal; 
blue, parietal; pink, occipital; grey, inferior parietal
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more information is passing through that node [55]. Degree 
is the total amount of connections each node has, therefore 
indicating the strength of links to other areas (reported as 
‘node strength’). A node with a higher degree can be thought 
of as having a greater influence on connecting nodes [56].

Graphical models of brain data have proven their efficacy 
in a variety of imaging modalities, such as fMRI [57], EEG 
[58, 59], magnetoencephalography (MEG) [60] and DTI 
[61]. Of these, sparse graphical models are distinctly effi-
cient at determining connectivity between in highly intercon-
nected brain data and at offering a robust and interpretable 

model of the most significant interactions between cortical 
areas [62].

Results

ERP Data Modelling Using the SNN Architecture

Figure 4 provides an overview of the steps of the current study. 
To explore the differences in cognition between YA, OA and 
MCI, an SNN architecture used to model, learn, classify and 

Fig. 4  Flow-chart of the proposed work for understanding spatiotemporal dynamics of prospective memory between younger, older and older 
adults with mild cognitive impairment
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visualise the EEG data related to the different memory tasks 
(1-backtarget,  PMpercept and  PMconcept). A SW connectivity 
radius of 2.5 units (distance between two consecutive neurons) 
was used for the SNN model, which has previously demon-
strated its effectiveness for ERP modelling using SNN [24]. 
The SW connectivity rule allows the network the potential to 
form neuronal connections two ANs away in each of the x, y, z 
directions of the coordinate space. Small random weights are 
applied to each neuron (−0.1, +0.1). In previous studies mod-
elling EEG data with SNNs, an 80/20 positive–negative initial 
connection weight ratio has been applied [23, 63]. This ratio 
of inhibitory neurons is reflective of the 20–30% of inhibi-
tory, GABAergic neurons found in the mammalian brain and 
is demonstrated as an optimal percentage for maximising the 
learning of a neural network [64, 65]. However, initial results 
demonstrated that this ratio was not optimal for modelling the 
current data. Figure 5 illustrates the trained network for the 
80/20 positive–negative ratio (a) and the 50/50 positive–neg-
ative ratio (b). The results show a greater amount of model 
learning for the 50/50 ratio as evidenced by the greater amount 
of connection changes from the initial connections. Therefore, 
a model containing 50% inhibitory connections demonstrated 
a better level of discrimination between the classes and was 
subsequently used for modelling the ERP data.

Similar to a biological neuron, when the simulated LIF AN 
receives spikes over time, its membrane potential increases 
until it reaches a pre-defined threshold. When the AN fires and 
emits an output spike, it cannot produce a new spike within a 
refractory period and its membrane potential is said to leak. The 
membrane potential can have certain leakage between spikes, 
which is defined by a leak parameter. The training of the SNN 
model requires EEG signals to be transformed into a spike-train 
of binary positive and negative spikes (−1 or 1; Fig. 6). These 
spikes reflect the changes in amplitude of the EEG signal and 
are created based on an encoding algorithm. A bi-directional 
TBR [34] was applied to all the EEG channel signal’s gradient 
relative to the time series. The neural connections in the initial-
ised SNN model were later modified during an unsupervised 
learning process with the input spikes steaming to the SNN 
model via input ANs.

The model was then trained using these spikes-trains in 
an unsupervised mode employing a STDP learning rule [37]. 
The application of this algorithm allows spiking ANs to learn 
successive temporal relationships between data points from 
the data across and within EEG channels. These connections 
in the model architecture can be analysed and used to draw 
new understanding of the data. Figure 7 shows the final SNN 
following the creation of neuronal connections created dur-
ing STDP learning, which reflect the dynamic patterns of 
connectivity.

When the supervised learning process is completed, the 
connection weights between the output ANs and the 3D 
SNN model are established. Then in the validation phase, the 
new ERP samples which were excluded from the learning 
phases are used to test the model. For every new testing ERP 
sample, an output testing AN is evolved and connected to the 
already trained SNN model, and its connections are modified 
while the ERP sample is passed to the SNN model. Then 
for classification of this testing AN, a K-nearest neighbour 
(KNN) algorithm was used, where the newly formed testing 
AN connection vector is compared with the existing output 
ANs’ connections, and the top k similar output ANs (refer-
ring to the top similar ERP samples) identify the class label 
of this testing AN (ERP sample). This procedure is repeated 
for all the testing samples, one by one, through creating dif-
ferent output testing samples and classifying them.

A grid search method was used in the current study for 
fine-tuning a combination of parameters and reducing the 
classification error. Each parameter was searched within a 
range, specified by a minimum and maximum, through 5 
iterations. A tenfold cross-validation was used to validate 
the results. Therefore, for every model creation, 78,125 itera-
tions of training (using 9 folds of samples except the holdout 
fold) and testing (using the holdout fold) were performed 
with different combinations of these parameters. The param-
eters that resulted in the best accuracy have been reported as 
the optimal parameters:

• The threshold for firing was set to 0.5, the refractory time 
was set to 5 and the LIF neuron model was set to 0.005.

Fig. 5  The number of connections and the connection weights in the SNN models for the 80/20 positive to negative neuron ratio model a and the 
50/50 positive to negative neuron ratio model b 
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• The STDP rate of the unsupervised learning algorithm 
was set to 0.002 for positive synaptic modifications and 
0.003 for negative connections.

• The mod parameter was set to 0.4 and the positive and 
negative drift was set to 0.002, 0.004, respectively.

• The KNN was set to 13 nearest neighbours.

Fig. 6  Example of how an 
event-related potential encoded 
into a spike-train. a Event-
related potential taken from 
one participant (electrode Cz) 
in response to a conceptual 
prospective memory stimulus. b 
Event-related potential encoded 
into a binary spike-train using 
the TBR algorithm

Fig. 7  The learnt patterns of 
activity from the initialised 
SNN models. The top SNN 
models show the initialisation 
of random connections. The 
bottom SNN models show the 
learnt patterns of spatiotemporal 
activity for each of the different 
stimuli

Initialisation

Training

Trained 3D model

1-back
target

PM
percept

PM
concept
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The optimisation procedure finds the best performing 
model for each of the SNN models. Table 1 presents the 
final test-fold of the best performing model (i.e. the held-out 
fold). Each of the SNN models was compared against other 
machine learning methods. Model accuracies was calculated 
using confusion matrices. At each memory stimulus type, 
the SNN model outperformed the other methods. Addition-
ally, the results show that the  PMpercept and  PMconcept SNN 
models were better at classifying brain activity of the groups 
(83.33% and 80%, respectively) compared to the 1-backtarget 
models (73.94%). It is also seen that with the use of ERP 
data, YA are well discriminated from the other two groups, 
while the ERPs of OA and MCI overlap to a certain degree. 
From the trained 3D SNN networks, we can begin to see the 
patterns of connectivity emerge.

To understand within-group differences, the training 
samples were separated by propagating only the informa-
tion for that class (i.e. YA, OA or MCI) through newly cre-
ated networks that kept the same initialised network and 
parameter settings attained during the supervised learning 
stage. By using the same initialised connections and only 
allowing the EEG data from one group to make changes 
to the network, different patterns of connectivity for each 
group can be learnt. Thus, three separated SNN models were 
trained with each of the classes. The initialised SNN models 

were modified during the STDP learning that adapted the 
spatiotemporal connections. After the training, those neural 
connections that had not changed for each model were con-
sidered inactive and were pruned from the network.

The removal of inactive ANs enables the creation of a 
fine-tuned, sparse networks [66] showing only the most 
important connections for the pre-trained class, enabling 
better visualisation of the differences between the groups. 
This step was performed across three different time periods 
to reveal the neural connections across time. The first time 
period was selected as 200–400ms to capture the early cog-
nitive processes associated with cue detection and monitor-
ing [67]. The second time epoch was 400–800ms, which 
encapsulates the later processing of stimuli and is related 
to deeper contextual and memory processes [16]. Finally, 
the full epoch was propagated through the network for each 
class to understand the learnt connections across the entire 
data range. The pruned networks can be visualised for each 
stimulus type in Fig. 8 for the 1-backtarget, Fig. 9 for  PMpercept 
and Fig. 10 for  PMconcept.

From Fig. 8, it is apparent that there are similar patterns 
of activity occurring for each of the defined time periods 
across the groups. However, it is difficult to see how the 
network is differentiating between the classes at both the 
200–400ms and 400–800ms time range. Differences appear 
to be more prominent when the whole 0–1000ms epoch is 
pruned for each of the classes. This may suggest that infor-
mation outside of the 200–800ms epoch is important in 
understanding ageing and cognitive decline. In particular, 
differences between OA and MCI appears to be substantial 
in the 0–1000ms  PMconcept model. There are fewer positive 
and negative connections for the MCI group. Interestingly, 
the pruning method appears to have removed many ANs in 
the left frontotemporal region for the 0–1000ms model in 
the MCI group in each of the models, implying relatively 
little spatiotemporal activity for the 1-backtarget during the 
working memory task.

Additionally, for PM stimuli across the wider epoch 
(0–1000ms), MCI demonstrated fewer positive and inhibi-
tory connections relative to OA and YA. In the  PMpercept 
stimuli, these inhibitory connections are spread more 
globally across the 3D SNN for healthy groups (YA, OA), 
but within the MCI group; the inhibitory connections are 
restricted to occipitoparietal, frontocentral and frontal 
regions. It appears inhibitory connections are spread simi-
larly across the network, albeit fewer overall inhibitory con-
nections for the MCI group. However, there appeared to be 
more positive connections for the healthy groups relative 
to MCI.

To validate the visualised changes from the pruned SNN 
models, histograms were plotted showing the pruned SNN 
connections weights (Fig. 11a). Compared to the initialised 
weights of each SNN, each model placed more emphasis on 

Table 1  Classification results of the ERP samples across the three 
class groups

ERP data classes YA OA MCI Accuracy (%) Total 
accuracy 
(%)

SNN-based methodology (1-backtarget)
   YA 8 0 0 100 73.94
   OA 2 9 0 81.82
   MCI 0 3 2 40

Traditional machine learning methods
Methods
Accuracy (%)

MLP
49.94

SVM
50.29

MLR
46.98

SNN-based methodology (PMpercept)
   YA 8 0 0 100 83.33
   OA 0 9 1 90
   MCI 0 2 3 60

Traditional machine learning methods
Methods
Accuracy (%)

MLP
62.07

SVM
47.28

MLR
50.29

SNN-based methodology (PMconcept)
   YA 8 0 0 100 80
   OA 1 8 1 80
   MCI 0 2 3 60

Traditional machine learning methods
Methods
Accuracy (%)

MLP
50.8

SVM
44.52

MLR
51.08



 Cognitive Computation

1 3

negative connection weights through training. Moreover, it 
is apparent that the weights now follow a somewhat Lapla-
cian distribution, characterised by the heavy tails as dem-
onstrated in the QQ-plots (Fig. 11b) and the high Kurtosis 
values (Table 2), with the addition of the failure to reject the 
distribution being from a normal distribution (Table 2). This 
distribution type has been shown to respond well to variable 

selection features, such as different applied methods of the 
adaLASSO [68].

Knowledge Extraction from Spiking Neural 
Networks

Due to the non-normal distribution of the SNN weights, 
data connection weights were firstly transformed using 
a natural logarithm. The adaLASSO regularisation was 
performed to discover the most important connections for 
each pruned epoch for the early (200–400ms) and later 
(400–800ms) pruned SNN epochs, along with the complete 
(0–1000ms) epoch. A 10-fold cross-validation was per-
formed for each of the variables. To increase the robustness 
of the results, each process was repeated 1000 times. Net-
work plots were mapped to a scalp array dependent on their 
topographical features. For example, Fig. 12 graphically 
illustrates the most important edges within the working 
memory (1-backtarget) network as a result of non-essential 
connections being forced to zero. The thickness and colour 
intensity of the lines are proportional to the wiring connec-
tion strength given as edge weight (EW). Positive wiring 
connections are displayed in blue and represent strength of a 
positive correlation between two regions and red line show 

Table 2  Skewness and kurtosis and normality test p-value from a 
Kolmogorov–Smirnov test of the SNNs following pruning

Group Skewness Kurtosis p-value

1-backtarget normality test
   YA −0.70 4.80  < 0.001
   OA −0.70 4.79  < 0.001
   MCI −0.67 4.71  < 0.001

PMpercept normality test
   YA −0.81 4.50  < 0.001
   OA −0.78 4.44  < 0.001
   MCI −0.75 4.35  < 0.001

PMconcept normality test
   YA −0.80 5.03  < 0.001
   OA −0.84 5.10  < 0.001
   MCI −0.78 4.93  < 0.001

4404 | 3711

4309 | 3691

4038 | 3667

YA

OA

MCI

Trained SNN 4754 | 16188

5106 | 16519

4935 | 16308

5203 | 16114

5394 | 16241

5247 | 16218

200 – 400ms 400 – 800ms 0 – 1000ms

4404 | 3 11

Fig. 8  1-backtarget SNN following pruning at 200–400  ms, 400–
800 ms and 0–1000 ms for each of the three classes: younger adults 
(YA), healthy older adults (OA) and older adults with MCI (MCI). 

Positive connections are displayed in blue, and inhibitory connections 
are displayed in red. The amount of positive–negative connections is 
shown under each pruned model
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the strength of a negative correlation of two regions nega-
tive connections are displayed in red. From these networks, 
the differences and similarities between groups are revealed.

Ongoing Working Memory (1‑backtarget)

A summary of all significant local connectivity Group 
effects and interactions for the 1-backtarget stimuli is pre-
sented in Table 3. No Group differences were found at mid-
line clusters or in the 0–1000 ms SNN model. Graphical 
networks are presented in Fig. 12.

Ongoing: 200–400 ms ANOVA Connection Weights

At bilateral clusters, there was a significant Cluster × Group 
interaction due to greater connection weights for YA rela-
tive to OA (frontal, p = 0.019; frontocentral, p = 0.009; cen-
tral, p < 0.001; frontotemporal, p = 0.005; inferior parietal, 
p = 0.029) and YA relative to MCI (parietal, p = 0.011). OA 
had greater connection weights at bilateral central clus-
ters relative to MCI (p = 0.008). The interaction was also 
explained by an effect of Cluster for all participants, where 
bilateral central clusters had larger connection weights 
than all other clusters (ps < 0.001). In YA, bilateral inferior 

parietal cluster connection weights were larger than in pari-
etal clusters (p < 0.001).

Ongoing: 400–800 ms ANOVA Connection Weights

At lateral clusters there was a significant effect of Group, 
where YA had significantly greater connection weights 
across all bilateral clusters than OA (p < 0.001) and MCI 
(p < 0.001). No differences were found between the OA 
and MCI groups (p > 0.05). There were no other significant 
Group effects for 1-backtarget stimuli.

Ongoing Task: Network Analysis 200–400 ms

For the 200–400ms network analysis of SNN models of the 
working memory ongoing task, the number of edges reduced 
to zero was approximately 95%, 97% and 98% for YA, OA 
and MCI, respectively. The centrality indices reveal a common 
area of importance across all participants groups over the right 
parietal cluster (YA node strength = 1.49; OA node strength = 
1.73; MCI node strength = 1.18). The cluster interactions that 
are formed with the right parietal are as follows: the right infe-
rior parietal (EW = 0.64) for the YA; the left inferior parietal 

4560 | 16586

4335 | 16262

4097 | 15807

YA

OA

MCI

Trained SNN 6224 | 14564

6913 | 14948

6463 | 14719

4942 | 15989

5353 | 16331

5301 | 16306

200 – 400ms 400 – 800ms 0 – 1000ms

Fig. 9  PMpercept SNN following pruning at 200–400 ms, 400–800 ms 
and 0–1000  ms for each of the three classes: younger adults (YA), 
healthy older adults (OA) and older adults with MCI (MCI). Positive 

connections are displayed in blue, and inhibitory connections are dis-
played in red. The amount of positive–negative connections is shown 
under each pruned model
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in the OA (EW = 0.53) and the right frontocentral in the MCI 
group (EW = 0.61). For both the YA and OA networks, there 
are connections from the frontal clusters to the frontocentral 
clusters (YA EW = 0.70; OA EW = 0.32), albeit on the oppo-
site hemispheres. The hemispheric symmetry between OA and 

YA is also found over frontocentral clusters, whereby the mid 
central cluster wire with left frontocentral clusters in the YA 
(EW = 0.51) but is instead shared with the right frontocentral 
cluster for OA (EW = 0.17). The same wiring patterns are not 
found within the MCI group.

4521 | 16129

4825 | 16423

3993 | 15085

YA

OA

MCI

Trained SNN 5941 | 14209

6992 | 14891

6719 | 14738

4463 | 15442

5611 | 16456

5012 | 15999

200 – 400ms 400 – 800ms 0 – 1000ms

5941 ||| 142000999 4 21 | 16129

4825 | 16664424 3

Fig. 10  PMconcept SNN following pruning at 200–400  ms, 400–
800 ms and 0–1000 ms for each of the three classes: younger adults 
(YA), healthy older adults (OA) and older adults with MCI (MCI). 

Positive connections are displayed in blue, and inhibitory connections 
are displayed in red. The amount of positive–negative connections is 
shown under each pruned model

Fig. 11  Validation of changes in SNN models. a Connection weights of each of the SNN models following pruning. Left to right: 1-backtarget, 
 PMpercept,  PMconcept. b QQ-plots of distributions
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Table 3  Summary of significant 
effects 1-backtarget SNN 
ANOVAModels

Clusters: F  frontal, FC  frontocentral,  C  central, FT  frontotemporal, P  parietal, IP  inferior pari-
etal, YA young adults, OA healthy older adults, MCI older adults with mild cognitive impairment
N.B. ‘ > ’ represents greater connections weights in this table

Lower F-value DF p-value ηp
2 Post-hoc tests

200–400 ms lateral SNN weights
Group 9.57 2,87  < 0.001 0.19
Cluster*group 2.06 10.27, 446.07 0.025 0.05

F 5.71 2,87 0.005 0.12 YA > OA = MCI
FC 4.79 2,87 0.011 0.11 YA > OA
C 9.81 2,87  < 0.001 0.20 YA > OA > MCI
FT 5.69 2,87 0.005 0.12 YA > OA = MCI
P 3.48 2,87 0.035 0.08 YA > MCI
IP 4.47 2,87 0.014 0.10 YA > OA = MCI
YA 15.93 6,162  < 0.001 0.37 C > FC = F = FT = IP > P = OC
OA 18.58 5.36, 198.39  < 0.001 0.33 C > FC = F = FT = IP = OC > P
MCI 8.31 6,75  < 0.001 0.33 C > FC = F = FT = IP = OC > P

400–800 ms lateral SNN weights
Group 12.67 2,87  < 0.001 0.24 YA > OA = MCI

Fig. 12  Working memory features extracted from the trained SNN 
using adaLASSO network analysis across the 200–400  ms, 400–
800  ms and across the entire 0–1000  ms trained epoch. YA, young 
adults; OA, healthy older adults; MCI, older adults with mild cogni-

tive impairment. Blue wiring connections show positive associations 
between clusters and red wiring connections show negative associa-
tions between clusters
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Network Analysis 400–800 ms

Edges were reduced by approximately 92% for young adults, 
98% for OA and MCI networks over the 400–800ms epoch. In 
the OA and MCI networks at 400–800ms, importance is placed 
occipitally such that most connections are retained within the 
occipital clusters relative to the rest of the cortex. In the OA 
group, the mid occipital cluster was wired to right occipital (EW 
= 0.46), which in turn was connected to the right central (EW 
= 0.46) and the left occipital cluster (EW = 0.26). In the MCI 
group, the mid occipital cluster had a positive connection with 
the left occipital cluster (EW = 0.63) and a negative connection 
with the right frontocentral cluster (EW = −0.43). Both the OA 
and MCI groups retain network relevance for the left occipital 
cluster (OA node strength = 0.46; MCI node strength = 2.64), 
but the right occipital cluster is also important in the OA group 
(node strength = 3.45). A different connection pattern is found 
for the YA group, where connectivity is localised over the right 
frontotemporal clusters with connections to right inferior pari-
etal, right parietal, right temporal and right central (average 
EW = 0.32) with the right inferior parietal cluster demonstrat-
ing the greatest network control (betweenness = 2.62).

Network Analysis 0–1000 ms

For the entire epoch, edges were reduced to approximately 95% 
for YA, 98% for OA and MCI groups. Across all groups, the 
mid central cluster demonstrates the largest node strength (YA 
= 0.89; OA = 2.03; MCI = 2.40) along with connections being 
retained between mid central–mid parietal clusters (YA EW = 
0.55; OA EW = 0.73; MCI EW = 0.78). The network analysis 
shows significant node strength for the left frontocentral cluster 
for all groups; the YA demonstrate the lowest left frontocentral 
node strength (0.04) compared to the older adult groups who 
exhibit comparable strength indices (OA = 1.25; MCI = 1.03). 
However, network-wiring differences are apparent between the 
older adult groups. From the left frontocentral cluster, OA had 
positive wiring with the mid parietal (EW = 0.17) and mid 
frontal (EW = 0.15) clusters. The MCI group demonstrated a 
negative connection from the left frontocentral cluster with the 
right inferior parietal cluster (EW = −0.42). Moreover, posi-
tive connections were found in anterior scalp regions in the YA. 
In the YA group, the right frontocentral cluster had the largest 
node strength (2.15). The right frontocentral was connected to 
the left frontotemporal cluster (EW = 0.47) and the left frontal 
cluster (EW = 0.62), which in turn shared connection with the 
left frontocentral cluster (EW = 0.31).

Perceptual Prospective Memory (PMpercept) Statistical 
Analysis

A summary of all statistically significant Group effects from 
the ANOVAs is presented in Table 4. No significant Group 

differences were found over midline clusters. Graphical net-
works are presented in Fig. 13.

Perceptual PM 200–400 ms ANOVA Connection Weights

At lateral clusters, there was a significant interaction 
effect of Cluster × Group. This interaction effect can be 
explained by a significant effect of Group at frontal clusters 
(OA > MCI, p = 0.030; OA > YA, p = 0.018). Additionally, 
the interaction can be explained by an effect of Cluster for 
YA (inferior parietal < all other clusters, ps < 0.05), OA 
(inferior parietal < all other clusters, ps < 0.001; frontal > all 
other clusters, ps < 0.001 but not including central, p > 0.05) 
and MCI (inferior parietal < central, frontal, occipital, pari-
etal, ps < 0.05; central > frontocentral, p = 0.020; frontocen-
tral > parietal, p = 0.028).

Perceptual PM 400–800 ms ANOVA Connection Weights

At lateral clusters, there was a significant Cluster × Hemi-
sphere × Group interaction. This in part can be explained 
by a Cluster × Group interaction in the right hemisphere 
(central: YA > OA, p = 0.031; YA > MCI, p = 0.032). Addi-
tionally, it can be explained by a Hemisphere × Group inter-
action at frontal clusters (all groups: right > left, ps < 0.05; 
right hemisphere: OA > YA, p = 0.027) and in parietal clus-
ters (YA: left > right, p = 0.032; left: YA > MCI, p = 0.034). 
The three-way interaction can also be explained by a Clus-
ter × Hemisphere for YA (left > right in frontal, frontocen-
tral, frontotemporal occipital, inferior parietal, ps < 0.05; 
right > left in parietal, p < 0.001; left hemisphere: frontotem-
poral, central > frontocentral, ps < 0.05; parietal > occipital, 
p = 0.007; right hemisphere: central, frontotemporal, pari-
etal > all other clusters, ps < 0.01; frontocentral, inferior 
parietal, occipital > frontal, ps < 0.01), OA (left > right in 
frontal, frontotemporal, occipital; left hemisphere: central, 
frontotemporal, parietal > frontocentral, ps < 0.05; right 
hemisphere: frontotemporal > central, frontal, frontocen-
tral, occipital, ps < 0.01; parietal > frontal, frontocentral, 
occipital, ps < 0.05) and MCI (left > right in frontal, fronto-
central, central, frontotemporal, occipital, inferior parietal; 
right > left in parietal; left hemisphere: frontotemporal > all 
other clusters except central, ps < 0.05; right hemisphere: 
frontotemporal > all other clusters, ps < 0.05).

Perceptual PM 0–1000 ms ANOVA connection weights

At lateral clusters, there was a significant interaction of 
Cluster × Group, due to a Group effect at frontotemporal 
clusters (YA > MCI, p = 0.029; YA > OA¸ p = 0.062 (trend)). 
Additionally, the interaction is explained by a significant 
effect of Cluster for YA (frontotemporal < all other clusters, 
p < 0.001; frontal > inferior, parietal, occipital, ps < 0.05; 
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central > frontocentral, p = 0.003) OA (frontotemporal < all 
other clusters, p < 0.001; frontal > inferior, parietal, occipi-
tal, ps < 0.05; central > inferior parietal, p = 0.045; inferior 
parietal > occipital, p = 0.006) and MCI (frontotemporal < all 
other clusters, ps < 0.001; inferior parietal < all clusters 
except frontotemporal, ps < 0.05).

Perceptual PM Network Analysis: 200–400 ms

Network models for 200–400ms induced a sparsity level 
of 97% for OA and 98% for YA and MCI groups. As seen 
in Fig. 13, the right frontal cluster has strong associations 
with neighbouring clusters across all participant groups. In 
the YA, the network reveals a strong positive connection 
between the right frontal and the right frontocentral cluster 
(EW = 0.33), which also exhibits significant network control 
(betweenness = 4.01) through a strong positive relationship 
with the right parietal cluster (EW = 0.27). A similar level 
of betweenness is exhibited in the OA group; however, net-
work control is instead demonstrated by the right frontal 

cluster with connections to the left frontal cluster (EW = 
0.38) and right frontotemporal cluster (EW = 0.49), which 
is not apparent for the MCI group. Additionally, for both the 
OA and MCI groups, positive connections and increased 
strength were found in the left central cluster (OA node 
strength = 0.80; MCI node strength = 1.58). The OA group 
demonstrates a positive left central to left frontocentral 
regions (EW = 0.43), whereas MCI shows a left central to 
mid occipital cluster relationship (EW = 0.35).

Perceptual PM Network Analysis: 400–800 ms

For the network models of 400–800ms, approximately 91%, 
96% and 98% of all edges were set to zero for the YA, OA 
and MCI groups, respectively. The models demonstrate 
the importance of the right frontocentral cluster over this 
epoch as all participant groups show similar levels of degree 
strength (YA node strength = 1.55; OA node strength = 
1.91; MCI node strength = 1.08), although only significant 
levels of betweenness for YA (2.70) and OA (3.56) were 

Table 4  Summary of significant group effects and interactions for the perceptual PM SNN ANOVA models

Clusters: F  frontal, FC = frontocentral, C central, FT  frontotemporal, P parietal, IP  inferior parietal, OC occipital, L  left hemisphere, R  right 
hemisphere, | separator between post hoc-tests, YA young adults, OA healthy older adults, MCI older adults with mild cognitive impairment
N.B. > in this table represents greater connection weights
a  trending toward significance

Lower F-value DF p-value ηp
2 Post-hoc tests

Lateral 200–400 SNN weights
Cluster*group 1.87 12,510 0.036 0.05

F 5.30 1,87 0.007 0.12 OA > MCI = YA
YA 10.74 6,168  < 0.001 0.29 F = FC = C = P = OC > FT = IP
OA 16.40 6,198  < 0.001 0.33 F = C | F > FC = C = FT = P = OC | F, FC, C, P, OC > IP
MCI 6.76 6,132  < 0.001 0.26 C, F, OC, P > IP | C > FC > P

Lateral 400–800 ms SNN weights
Cluster*hemisphere*group 1.90 12,510 0.046 0.05
Cluster*hemisphere YA 15.21 6,168  < 0.001 0.36 F, FC, FT, P, IP, OC: L > R | L: FT & C > FC | P > OC | R: 

FT = C = IP > FC = IP = OC > F
OA 14.41 6,198  < 0.001 0.30 F, FT, OC: L > R | L: FT = C = P = C = IP = OC > FC | R: FT > C, F, 

FC, OC | P > F, FC, OC
MCI 13.31 6,132  < 0.001 0.45 F, FC, C, FT, IP, OC: L > R | P: R > L | L: 

FT > P = IP = OC = FC = F | R: FT > all clusters | 
C = IP > P = OC = FC = F | IP > F

Lateral 400–800 ms SNN weights
Cluster*group R 1.90 12,510 0.033 0.05 C: YA > OA = MCI
Hemisphere*group F 5.54 2,87 0.006 0.12 R: OA > YA | YA, OA, MCI: L > R

P 5.56 2,87 0.005 0.12 L: YA > MCI | YA: L > R
Lateral 0–1000 ms SNN weights
Cluster*group 3.29 3.07,130.50 0.022 0.08

FT 4.12 2,87 0.020 0.09 YA > MCI | YA >  OAa

YA 116.09 1.62,45.37  < 0.001 0.81 F > FC, IP, P, OC | C > FC | all clusters > FT
OA 89.17 1.54,56.91  < 0.001 0.73 F > IP, P, OC | C > IP | IP > OC | all clusters > FT
MCI 33.60 1.43,31.45  < 0.001 0.65 F, FC, P, OC > IP | all clusters > FT
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found implying a possible loss of network control in MCI. 
Similarly, the mid frontal cluster also shows strong network 
strength and network control but only for YA (node strength 
= 1.62; betweenness = 1.79) and OA (node strength = 2.10; 
betweenness = 1.62) but not in the MCI group. A compara-
ble pattern is also seen in the left frontocentral cluster, where 
network strength is found for both YA (node strength = 1.50) 
and OA (node strength = 1.09), but not for MCI groups. The 
MCI groups instead show strong betweenness and network 
strength for the right inferior parietal (node strength = 2.43; 
betweenness = 4.01) cluster and node strength in the left 
parietal cluster (2.31).

Perceptual PM Network Analysis: 0–1000 ms

The approximate percentage of edges set to zero for the 
entire epoch are 94%, 97% and 99% for the YA, OA and MCI 
groups, respectively. The node strength indices highlight two 
areas of particular importance for  PMpercept stimuli for all 
groups: the right frontocentral cluster (YA = 1.24; OA = 
1.63; MCI = 1.36) and the left frontal cluster (YA = 2.60; 
OA = 1.85; MCI = 2.20). These clusters exhibit the great-
est strength within the network, although differences were 
found in the measures of betweenness. The left frontal clus-
ter exhibits significant network control in the YA (2.82) and 
OA groups (1.08) but not in the MCI group. In the YA, there 
were strong positive connections from the left frontal cluster 
with the right frontal (EW = 0.38), right frontocentral (EW 
= 0.49) and with the left frontocentral cluster (EW = 0.42). 
A similar pattern is observed between the left frontal cluster 
in OA with the right frontal (EW = 0.41) and the left fron-
tocentral cluster (EW = 0.29). This connectivity pattern is 
not found in the MCI group. The YA group exhibits positive 
bilateral frontocentral connections with the mid occipital 
cluster (left frontocentral EW = 0.25; right frontocentral 
EW = 0.16) and a negative right frontal – left occipital 
connection (EW = -0.31). The OA group exhibits a local 
network feature over the right frontotemporal scalp region, 
characterised by the strong positive right central–right tem-
poral (EW = 0.30), right temporal–right frontocentral (EW 
= 0.36) and mid central–right frontocentral (EW = 0.25) 
connections, where network control is ascribed to the right 
frontocentral cluster (betweenness = 2.57). The same local 
network is not found in the MCI group, but a negative con-
nection is found for right frontocentral–left parietal clusters 
(EW = −0.38).

Conceptual Prospective Memory (PMconcept) Statistical 
Analysis

All significant Group effects ANOVA results are presented 
in in Table 5. There were no significant Group effects over 
midline clusters. Graphical networks are presented Fig. 14.

Conceptual PM 200–400 ms Connection Weights ANOVA

At lateral clusters, there was a significant Cluster × Group 
interaction, due to an effect of Group at occipital (YA > OA, 
p = 0.025), inferior parietal (YA > OA, p = 0.056 (trend)) 
and central clusters (YA > OA, p < 0.001; YA > MCI, 
p = 0.006). The interaction effect was also due to an effect 
of Cluster in YA (occipital > all other clusters, ps < 0.001; 
inferior parietal > frontocentral, p < 0.001; inferior pari-
etal > frontotemporal, p = 0.045; parietal > frontocentral, 
p = 0.001), OA (occipital > all other clusters, ps < 0.001; 
central < all other clusters, ps < 0.05; inferior parietal > fron-
tal, p = 0.023; inferior parietal > frontotemporal, p = 0.005) 
and MCI (occipital > all other clusters, ps < 0.001; cen-
tral < frontal, p = 0.002; central < parietal, inferior parietal, 
ps < 0.001; frontotemporal > inferior parietal, parietal, 
ps < 0.05).

Conceptual PM 400–800 ms Connection Weights ANOVA

At lateral clusters, there was a significant three-way Clus-
ter × Hemisphere × Group interaction. This can be explained 
by a significant Cluster × Group in the left hemisphere, such 
that YA had significantly larger connection weights than 
OA in frontal (p = 0.005), frontocentral (p = 0.004), cen-
tral (p = 0.002) and parietal clusters (p = 0.021) and larger 
connections weight than MCI in frontocentral (p = 0.015) 
and central clusters (p = 0.003). The three-way interaction 
can also be explained by a Hemisphere × Group effect at 
frontotemporal clusters (F2,87 = 3.51, p = 0.035, ηp

2 = 0.08), 
whereby in the right hemisphere, OA had larger connec-
tion weights than in YA (p = 0.015). The three-way interac-
tion can also be explained by a Cluster × Hemisphere for 
YA (left > right in frontal, frontotemporal, parietal, infe-
rior parietal, ps < 0.05; right hemisphere: frontal, central, 
parietal > frontotemporal, occipital, ps < 0.005; inferior 
parietal > occipital, p = 0.001; left hemisphere: fronto-
temporal < all other clusters, ps < 0.001; central > frontal, 
inferior parietal, ps < 0.01), OA (left > right in frontal, 
frontotemporal, parietal, inferior parietal, ps < 0.05; right 
hemisphere: frontal, frontocentral, central, occipital > fron-
totemporal, parietal, ps < 0.005; central, occipital > inferior 
parietal, ps < 0.001; left hemisphere: frontal, parietal, infe-
rior parietal > frontotemporal, ps < 0.05; parietal > fronto-
central, occipital, ps < 0.01) and MCI (left > right in fron-
tal, frontotemporal, parietal, inferior parietal, ps < 0.05; right 
hemisphere: central, occipital > frontotemporal, parietal, 
ps < 0.05; central > frontal, p = 0.008; frontal > frontotem-
poral, p = 0.002; left hemisphere: inferior parietal > fronto-
temporal, p = 0.033; parietal > central, occipital, ps < 0.05). 
All groups demonstrated greater connection weights in the 
right relative to the left hemisphere in occipital clusters 
(ps < 0.05).
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Conceptual PM 0–1000 ms ANOVA Connection Weights

At lateral clusters, a significant Hemisphere × Group interac-
tion Group is explained by a significant effect of Group in 
the right hemisphere (MCI > YA, p = 0.024) and a significant 
effect of Hemisphere in OA and MCI, such that the right 
hemisphere connection weights were significantly greater 
than the left hemisphere (OA: p < 0.001; MCI: p = 0.007).

Conceptual PM Network Analysis: 200–400 ms

Over 200–400ms, approximately 97% of edges for YA and 
OA and 95% of edges for the MCI group were set to zero. 
A common cluster across all groups for this earlier epoch 
is the right occipital cluster, where the MCI group exhib-
its the greatest node strength (1.66), relative to YA (0.60) 
and OA (0.25). From the right occipital cluster, connections 
to mid parietal clusters were found for both the OA (EW 
= 0.33) and MCI groups (EW = 0.34), along with a right 

parietal–right central relationship (OA EW = 0.49; MCI 
EW = 0.23). Additionally, the MCI group shares similar 
network strength in the left frontal cluster (node strength 
= 1.78) as the YA group (node strength = 1.25). Both the 
MCI and YA groups demonstrate the greatest amount of 
network control originating from the left frontal cluster (YA 
betweenness = 3.36, MCI betweenness = 1.31). However, 
while the YA group demonstrates connections from the left 
frontal cluster to the right frontal (EW = 0.32), left temporal 
(EW = -0.31) and left frontocentral (EW = 0.44), the model 
shows longer connections toward posterior regions for the 
MCI group with the left frontal cluster connecting to left 
occipital (EW = 0.70), right occipital (EW = 0.20) and the 
left central clusters (EW = 0.42).

Conceptual PM Network Analysis: 400–800 ms

Model sparsity was approximately 90% for YA, 96% for OA 
and 94% for MCI. There are several network similarities 

Table 5  Summary of significant effects for 200–400 Conceptual PM SNN ANOVA Models

Clusters: F frontal, FC frontocentral, C central, FT frontotemporal, P parietal, IP inferior parietal, OC occipital, L left hemisphere, R right hemi-
sphere, | separator between post hoc-tests, YA young adults, OA healthy older adults, MCI older adults with mild cognitive impairment
N.B. > represents greater connections weights in this table
a trending toward significance

Lower F-value DF p-value ηp
2 Post-hoc tests

Lateral 200–400 SNN weights
Cluster*groups 2.73 8.65,376.22 0.005 0.06

C 9.59 2,87  < 0.001 0.19 YA > OA, MCI
IP 3.53 2,87 0.034 0.08 YA >  OAa

OC 4.14 2,87 0.019 0.09 YA > OA
YA 16.19 3.82,106.92  < 0.001 0.37 OC > F, FC, C, FT, P | IP > FC, FT |P > FC
OA 30.17 3.62,133.82  < 0.001 0.45 C < all clusters | OC > all clusters | IP > F, FT
MCI 25.58 3.72,81.88  < 0.001 0.59 OC > all clusters | F, IP, P > C | IP, P > FT

Lateral 400–800 ms SNN weights
Cluster*hemisphere*group 1.96 10.30,448.12 0.035 0.05
Cluster*hemisphere YA 16.44 4.01,112.39  < 0.001 0.37 F, FT, P, IP, OC: L > R | R: F, C, P > FT = OC | IP > OC | L: 

FT < all clusters | C > F = IP | OC: R > L
Lateral 400–800 ms SNN weights
Cluster*group OA 14.58 4.54,167.95  < 0.001 0.28 F, FT, IP, P: L > R | | R: F, FC, C, OC > FT = P | OC, C > IP| L: 

F = P = IP > FT | P > FC = OC | OC: R > L
MCI 15.57 4.65,102.27  < 0.001 0.46 F, FT, IP, P: L > R | OC: L > R | L: IP > FC | P > OC = C| R: 

C = OC > FT = P | C > F > FT
Left 2.33 8.29,360.50 0.018 0.05 F: YA > OA | FC: YA > OA = MCI | C: YA > MCI = OA| P: 

YA > OA
Hemisphere*group Right 3.50 10.66,463.87  < 0.001 0.08 F: YA > MCI | C: YA > OA = MCI | FT: OA > YA | P: YA > MCI

FT 3.51 2,87 0.035 0.08 R: OA > YA
Lateral 0–1000 ms SNN weights
Hemisphere*group 3.89 2,87 0.025 0.09

R 4.23 2,87 0.015 0.10 MCI > YA
OA 25.18 1,37  < 0.001 0.41 R > L
MCI 9.46 1,22 0.007 0.35 R > L
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between the groups at this period. All groups demonstrate 
considerable degree strength at left frontal clusters (YA = 
0.12; OA = 0.93; MCI = 1.43). The network highlights the 
importance, as indicated by a measure of betweenness, of 
mid parietal and left parietal for YA (mid parietal = 0.05; 
left parietal = 0.48), OA (mid parietal = 1.20; left parietal 
= 1.53) and MCI (mid parietal = 1.76; left parietal = 0.27) 
groups. Differences are apparent in the connections between 
groups. In the frontal clusters, the YA demonstrate a left 
frontal–left parietal connection (EW = 0.46); OA demon-
strate a similar left frontal–mid parietal connection (EW 
= 0.25), but MCI exhibits a shorter left frontal–left fronto-
central connection (EW = 0.58). The MCI group displays 
a strong interhemispheric connection between left temporal 
and right temporal clusters (EW = 0.56).

Conceptual PM Network Analysis: 0–1000 ms

The approximate number of edges reduced to zero for the 
entire  PMconcept epoch was 95% for YA and OA, and 92% for 
MCI. The left frontocentral cluster contains the most amount 
of network control (YA betweenness = 1.66; OA between-
ness = 4.01; MCI betweenness = 2.98). Additionally, YA 

and OA both show left frontocentral connections with the 
left central cluster (YA EW = 0.32; OA EW = -0.44). Con-
versely, where a connection for the YA is found between the 
left frontocentral cluster and right frontocentral cluster (EW 
= 0.32), a negative connection is found between the two 
clusters for the MCI group (EW = −0.60). Figure 12 shows 
network connections between left frontal–right frontal (EW 
= 0.19) and left frontocentral–right frontocentral (EW = 
0.18) in YA. MCI show a negative connection from the right 
frontocentral cluster to the left frontocentral cluster (EW = 
−0.18). The YA model favours a left frontocentral connec-
tivity pattern, whereas the older adult groups incorporate 
more temporal-posterior regions.

Discussion

The current study aimed to improve the modelling and 
understanding of the neurocognitive dynamics that underpin 
PM across young adults, older adults and older adults expe-
riencing MCI using a brain-inspired computational frame-
work. Through the classification functionality of the SNN 
architecture, the current experiment sought to determine 

Fig. 13  Perceptual prospective memory  (PMpercept) features extracted 
from the trained SNN using network analysis (adaLASSO) across the 
200–400  ms, 400–800  ms and across the entire 0–1000  ms trained 
epoch. YA, young adults; OA, healthy older adults; MCI, older adults 

with mild cognitive impairment. Blue wiring connections show posi-
tive associations between clusters and red wiring connections show 
negative associations between clusters
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whether PM stimuli would enable better classification accu-
racy of brain activity between the groups compared to work-
ing memory stimuli. Two conclusions can be drawn from 
the results: firstly, greater accuracy was achieved by using 
a SNN methodology relative to the traditional ML methods 
(SVM, MLP, MLR); secondly, greater SNN classification 
accuracy was achieved with brain responses to PM stimuli 
compared to the ongoing working memory task at classify-
ing brain activity between young adults, older adults and 
older adults with MCI. This study also sought to uncover 
new insights of spatiotemporal connectivity between the 
groups through a series of ANOVAs and network analy-
ses on each of the SNN models. In general, younger adults 
exhibited greater local cluster connectivity compared to 
healthy older adults and older adults with MCI indicated 
through increased wiring across the scalp. Network analyses 
largely show that older adults with MCI had decreased wir-
ing across the cortex in response to working memory and 
perceptual PM tasks. However, network activity in response 
to conceptual PM revealed greater cortical wiring in those 
with MCI relative to young and healthy older adults.

Prospective memory may have enabled greater classifica-
tion accuracy relative to working memory due to the higher 

cognitive demands required to complete the PM tasks [69]. 
Coping with additional cognitive demand is problematic for 
older adults with MCI [70, 71], which would be reflected 
in neural signalling and subsequently in the SNNs allow-
ing for easier discrimination of neurophysiological activ-
ity. Thus, the earlier detection of dementia-related diseases 
may be achieved through the application of ML methods in 
cognitively demanding memory tasks as opposed to simple 
cognitive tasks. Although, this would need to be confirmed, 
for example, within a longitudinal design. PM tasks may 
be particularly suitable for discerning neurocognitive dif-
ferences in those with MCI as it is one of the first reported 
cognitive complaints of older adults who go on to develop 
MCI and dementia [72].

The current study demonstrates that 3D SNN model 
interpretability can be enhanced by propagating ERP data 
(as spike-trains) from a specific group and pruning network 
connections that did not change. The removal of these con-
nections produced sparse SNN models which better reflect 
patterns of learnt activity. Therefore, these sparse networks 
offer a novel method to interpret models of task-based neu-
rophysiological activity to gain a deeper understanding 
of connectivity through spatial and temporal dimensions. 

Fig.14  Conceptual prospective memory  (PMconcept) features extracted 
from the trained SNN using network analyses (adaLASSO) from the 
200–400  ms, 400–800  ms and across the entire 0–1000  ms trained 
epoch. YA, young adults; OA, healthy older adults; MCI, older adults 

with mild cognitive impairment. Blue wiring connections show posi-
tive associations between clusters and red wiring connections show 
negative associations between clusters
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Additionally, pruning non-important connections enabled 
the connection weights to follow distributions that allow for 
statistical analyses to be performed on the models.

Analyses demonstrated the importance of anterior clus-
ters for all participant groups in response to perceptual PM 
stimuli. Both younger and older adults had significantly 
greater levels of wired regions across the cortex relative to 
older adults with MCI, particularly in frontal and frontocen-
tral clusters. The aPFC plays an important role in the balance 
of attention between the ongoing task and the intermetal rep-
resentation of PM stimuli [73]. FMRI evidence implicates 
functional deterioration in attention networks (dorsal and 
ventral) in older adults with amnestic MCI and Alzheimer’s 
disease [74–76]. The decrease of frontocortical connectivity 
in older adults with MCI possibly represents a deteriora-
tion in the functional networks responsible for performing 
the attentional balance between working memory and PM 
intention maintenance.

Contrary to the perceptual PM models, older adults with 
MCI showed greater cluster-to-cluster wiring across the 
cortex than younger and older adults in the conceptual PM. 
This concurs with evidence of hyperconnectivity and faster 
memory decline [77]. Some researchers report decreased 
functional connectivity in those with MCI and early Alz-
heimer’s disease [78–81], while others report increases in 
cortical connectivity [82–86]. In a comparison of resting 
and task-based connectivity, Jiang and Zheng [87] demon-
strated that while functional connectivity in an MCI group 
decreased relative to healthy controls at rest, in the working 
memory task, the MCI group exhibited group exhibited 
greater inter- and intra-hemispheric connectivity. Jiang and 
Zheng suggest that levels of cortical connectivity increase 
as a means of supporting atrophied cortical regions during 
memory tasks. Although the current study did not compare 
the results with resting-state activity, similar compensatory 
mechanisms may be being utilised throughout the cortex 
in the MCI group during the more difficult conceptual PM 
tasks relative to the highly salient perceptual PM task and 
the relatively simple working memory task. Indeed, evi-
dence shows greater inter-hemispheric EEG connectivity 
in those with MCI when memory task demands increase 
[88], which was not found in healthy controls. Increased 
functional connectivity between parahippocampus and the 
middle frontal gyrus is associated with decreased episodic 
memory performance in those with MCI [86]. Similarly, 
frequent rewiring is seen in ASD individuals as the indi-
vidual adapts to increased cognitive demands [27]. Taken 
together with the current findings, decreases in connectiv-
ity may be apparent in resting-state and simple memory 
tasks in those with MCI. Potentially, however, as the dif-
ficulty of a task increases, so might the connectivity for 
individuals with MCI possibly reflecting compensatory 
mechanisms.

The current study used a 50/50 positive to negative con-
nection ratio to initialise the SNN models. While this pro-
vided a better rate of learning within the current study than 
the more commonly used 80/20 ratio, other configurations 
were not tried. Potentially, there are better positivity to nega-
tive ratios for modelling ERP data in a SNN architecture. 
Therefore, future researchers are encouraged to incorporate 
the experimentation of different initial connection weight 
ratios during the optimisation stage in SNNs.

The proposed approach has shown an excellent ability 
to discriminate functional brain connectivity networks for 
young adults, older adults and older adults with MCI. As 
such, this SNN method may be further utilised to measure 
the effect of treatments applied over time in older adults 
with MCI in their PM ability. In addition, turning the identi-
fied spatio-temporal patterns of functional connectivity into 
linguistic knowledge (rules) as suggested in [21] can help to 
better understand PM decline and MCI.

The current study proposes the utility of comparing corti-
cal connectivity in those with MCI between simple cognitive 
tasks and more cognitively demanding tasks. Future research 
should explore other cognitive domains that can be varied in 
their difficulty to confirm the differences in hypo- and hyper-
connectivity in MCI. It would be expected that as cognitive 
decline progresses, the more challenging cognitive tasks will 
also be associated with decreases of functional connectivity 
in line with the declines found in AD [89].

Conclusion

The current study shows that the spatiotemporal connectiv-
ity in working memory and PM tasks can be modelled and 
visualised using SNNs to gain an increased understanding of 
the effects of ageing and cognitive decline. The SNNs dem-
onstrated that classification accuracy of brain activity related 
to working memory and PM is better than conventional ML 
methods. Moreover, STBD in response to PM stimuli pro-
vides better classification accuracy than working memory in 
SNNs. Visualisation of the task-based memory activity can 
be improved through pruning of inactive ANs and neural 
connections in the SNN models. Analyses of the SNN mod-
els revealed different spatiotemporal connectivity between 
the groups at a local and global level. In general, local clus-
ter connectivity was greater for younger adults but older 
adults had increased connectivity in frontal clusters during 
the perceptual PM models. The older adults with MCI had 
decreased global connectivity relative to healthy older adults 
and younger adults in the working memory and perceptual 
PM, but in the conceptual PM models, MCI patients had 
increased cortical connectivity potentially reflecting com-
pensatory mechanisms during a more cognitively demanding 
PM task.
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Appendix 1

Formula 1

The formula for encoding positive and negative spikes is 
given as:

The variability in signal amplitude over time is denoted 
by V(t) for a signal S(t) over time t = 1, 2, …, n where at 
baseline, V(1) = S(1). If the upcoming signal amplitude S(t) 
is greater than V(t –1) + θ (where θ is a defined threshold) 
at the next point t, then a positive spike is produced, while a 
negative spike is created for a decreased signal.

Formula 2

The membrane potential leakage between spikes can be 
defined by a parameter τ. The LIFM is defined via:

where τm represents the membrane time constant, vrest 
reflects the resting potential, R is the resistance and I is the 
input current.

Formula 3

F(∆t) describes the adjustment of synaptic plasticity 
with respect to the pre-synaptic and post-synaptic spik-
ing time in the interval of ∆t = tpre-tpost. The parameters 
A + and A- are the maximum amounts for synaptic adjust-
ment, which apply if ∆t is close to zero. The parameters 
� + and �—control the interval of pre- to post-synaptic 

spike(t) = {1thenV(t) ← V(t − 1) + �;ifS(t) ≥ V(t − 1) + �

�m
dv

dt
= vrest − v(t) + RI(t)

F(Δt) =

⎧
⎪⎨⎪⎩

A+exp
�

Δt

𝜏+

�
ifΔt < 0

−A−exp
�
−

Δt

𝜏−

�
ifΔ ≥ 0

spikes during which the weakening and the strengthening 
of the synaptic connection occur.

Formula 4

At time t the postsynaptic potential (PSP) of the artificial 
neuron j is calculated as follows:

where mod is a modulation factor (a parameter between 0 
and 1) and order(i) represents the order of the spikes in time 
between artificial neurons i and j.

Formula 5

The drift parameter modifies connection weight Wi,j by 
accounting for the following spikes at artificial neuron j 
at time t, denoted as spike(t).

Formula 6

The adaLASSO estimator is given by:

where ŵj = 1/|||�̂∗j
|||
2

 , γ > 0 and �̂∗
j
 is an initial parameter esti-

mate. As the sample size grows, the weights diverge (to 
infinity) for zero coefficients, whereas, for the non-zero coef-
ficients, the weights converge to a finite constant.

PSP(j, t) =
∑

modorder(i)Wij

Wi,j(t) =

{
Wi,j(t − 1) + driftif spikej(t) = 1

Wi,j(t − 1) − driftif spikej(t) = 0

�̂adaLASSO = argmin
�
‖y −

��
j=1

xj�j‖
2

+ �

��
j=1

ŵj
����j

���
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Appendix 2

Cluster Electrode locations

Left frontal AF7 AFF5 AFF5h FP1 AF3 AFF3h
Right frontal AFF4h AF4 FP2 AFF6h AFF6 AF8
Mid frontal AFFz Fz FFCz FCz
Left frontocentral FC5h FC3 FC3h FFC5h F3 FFC3h FC1 F1
Right frontocentral FC4h FC4 FC6h FFC4h F4 FFC6h FC2 F2
Left central C3h C3 C5h C5 T7h
Mid central Cz CCPz CPz C2h CCP2h C1h CCP1h
Right central C4h C4 C6h C6 T8h
Left frontotemporal T7 FT7 F7
Right frontotemporal F8 FT8 T8
Left parietal CPP3h P3 CCP1 CP5 CP5h CP3 CPP5h
Mid parietal CPPz Pz PPOz POz
Right parietal CPP3h P4 CPP6h CP6 CP6h CP4 CCP2
Left inferior parietal TP7 TP7h P5 P7 P9
Right inferior parietal P10 P8 P6 TP8 TP8h
Left occipital PPO5 PO7 PO9 PO11 O1 POO5 PO3h
Mid occipital POOz Oz OIz Iz
Right occipital O2 POO6 PO4h PPO6 PO8 PO10 PO12

Electrode locations are given in relation to the 10–5 system
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