7,629 research outputs found

    Analysis of organic compounds in returned comet nucleus samples

    Get PDF
    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter

    Simple Muscle Architecture Analysis (SMA): an ImageJ macro tool to automate measurements in B-mode ultrasound scans

    Full text link
    In vivo measurements of muscle architecture (i.e. the spatial arrangement of muscle fascicles) are routinely included in research and clinical settings to monitor muscle structure, function and plasticity. However, in most cases such measurements are performed manually, and more reliable and time-efficient automated methods are either lacking completely, or are inaccessible to those without expertise in image analysis. In this work, we propose an ImageJ script to automate the entire analysis process of muscle architecture in ultrasound images: Simple Muscle Architecture Analysis (SMA). Images are filtered in the spatial and frequency domains with built-in commands and external plugins to highlight aponeuroses and fascicles. Fascicle dominant orientation is then computed in regions of interest using the OrientationJ plugin. Bland-Altman plots of analyses performed manually or with SMA indicates that the automated analysis does not induce any systematic bias and that both methods agree equally through the range of measurements. Our test results illustrate the suitability of SMA to analyse images from superficial muscles acquired with a broad range of ultrasound settings.Comment: 8 pages, 7 figures, 1 appendi

    Data processing system for the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory-F (OGO-F) satellite

    Get PDF
    The system is discussed which was developed to process digitized telemetry data from the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory (OGO-F) Satellite. Functional descriptions and operating instructions are included for each program in the system

    Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite

    Get PDF
    A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper

    Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Get PDF
    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources

    Impact and collisional processes in the solar system

    Get PDF
    As impact cratered terrains have been successively recognized on certain planets and planetary satellites, it has become clear that impact processes are important to the understanding of the accretion and evolution of all solid planets. The noble gases in the normalized atmospheric inventories of the planets and the normalized gas content of meteorites are grossly similar, but demonstrate differences from each other which are not understood. In order to study shock devolatilization of the candidate carrier phases which are principally thought to be carbonaceous or hydrocarbons in planetesimals, experiments were conducted on noble gase implantation in various carbons: carbon black, activated charcoal, graphite, and carbon glass. These were candidate starting materials for impact devolatilization experiments. Initial experiments were conducted on vitreous amorphous carbon samples which were synthesized under vapor saturated conditions using argon as the pressurizing medium. An amino acid and surface analysis by laser ionization analyses were performed on three samples of shocked Murchison meteorite. A first study was completed in which a series of shock loading experiments on a porous limestone and on a non-porous gabbro in one and three dimensions were performed. Also a series of recovery experiments were conducted in which shocked molten basalt a 1700 C is encapsulated in molybdenum containers and shock recovered from up to 6 GPa pressures

    MM and subMM molecular line observations of the southwest lobe of L1551: Evidence of a shell structure

    Get PDF
    Observations have been made of the southwest outflow lobe of L1551 in several millimeter and submillimeter molecular lines. Maps have been made in the J=3-2 and J=2-1 transitions of CO over areas of 7.5 by 2.5 arc minutes and 5 by 5 arc minutes respectively at UKIRT. More detailed maps have also been made in the J=2-1 CO transition over an area of about 6 by 3.5 arc minutes at the NRAO 12m telescope. Additional observations of the J=4-3 transitions of HCN, HCO(+) abd H(13)CO(+) were made at selected positions. The HC(+) J=4-3 transition was detected at several positions along the outflow axis and at the position of IRS 5. Similarly the HCN J=4-3 transition was detected at the position of IRS 5 and also at a position close to HH29. However, the J=4-3 transition of H(13)CO(+) was bit detected at the position of IRS 5 even through it was observed at the position close to HH29 with a peak corrected antenna temperature of 0.23K at a V(LSR) of 1 km s(-1). The detection of the J=4-3 transitions of both HCO(+) and H(13)CO(+) close to the position of HH29 suggest the presence of very dense gas in this region. LVG analysis of the various molecular lines observed give a kinetic temperature between 10 and 15K and a density from 10(5) to 10(6) cm(-3) at the position of IRS 5 at the ambient cloud velocity. At the position close to HH29 LVG analysis of the CO observations gives a density between 10(3) and 10(4) cm(-3) at a kinetic temperature of 25k for a V(LSR) of 0 km s(-1). To the southwest of HH29 there is a large decrease in both the linewidth and intensity of CO emission. This may be due to the interaction between the outflow and a dense clump of gas which gives rise to HH29. The maps of the CO J=3-2 and CO J=2-1 emission integrated in 3.25 km s intervals show the shell structure postulated by Snell and Schloerb (1985)

    The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope

    Get PDF
    We designed, built, and calibrated a new spectropolarimeter for the HiVIS spectrograph (R 12000-49000) on the AEOS telescope. We also did a polarization calibration of the telescope and instrument. We will introduce the design and use of the spectropolarimeter as well as a new data reduction package we have developed, then discuss the polarization calibration of the spectropolarimeter and the AEOS telescope. We used observations of unpolarized standard stars at many pointings to measure the telescope induced polarization and compare it with a Zemax model. The telescope induces polarization of 1-6% with a strong variation with wavelength and pointing, consistent with the altitude and azimuth variation expected. We then used scattered sunlight as a linearly polarized source to measure the telescopes spectropolarimetric response to linearly polarized light. We then made an all-sky map of the telescope's polarization response to calibrate future spectropolarimetry.Comment: PASP 118, June 200

    Heat capacity uncovers physics of a frustrated spin tube

    Get PDF
    We report on refined experimental results concerning the low-temperature specific heat of the frustrated spin tube material [(CuCl2tachH)3Cl]Cl2. This substance turns out to be an unusually perfect spin tube system which allows to study the physics of quasi-one dimensional antiferromagnetic structures in rather general terms. An analysis of the specific heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, at somewhat elevated temperatures the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat located around 2 K. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.Comment: 4+ pages, 6 figure

    Matter-Wave Decoherence due to a Gas Environment in an Atom Interferometer

    Full text link
    Decoherence due to scattering from background gas particles is observed for the first time in a Mach-Zehnder atom interferometer, and compared with decoherence due to scattering photons. A single theory is shown to describe decoherence due to scattering either atoms or photons. Predictions from this theory are tested by experiments with different species of background gas, and also by experiments with different collimation restrictions on an atom beam interferometer.Comment: 4 pages, 3 figures, accepted to PR
    corecore