889 research outputs found

    Dynamic spectrum access : secondary user coexistence in the FM band

    Get PDF
    The explosion of wireless everything in recent years has placed a strain on the radio spectrum, and has led to the so-called ‘spectrum crunch’, where the spectrum is described as being nearly at capacity [1]. It is widely accepted that in reality this is not the case, as great numbers of ‘allocated’ bands are underutilized or not in use at all. In other words, the radio spectrum is not used as efficiently as it could be. Commonly, bands (containing many channels) are classified by spectrum regulators for a particular type of use, such as those for FM Radio, Digital TV and cellular services. If there are not enough Primary Users (PUs) to use all of the channels in these bands, they lie empty. Using new spectrum access techniques, these channels can be targeted for 5G and IoT applications. This work focuses on targeting the FM Radio band (88-108 MHz). Signals broadcast at these frequencies have excellent propagation characteristics, and are able to diffract around objects such as hills and human-made structures, and penetrate through buildings well. Recent studies [2] have shown that a significant portion of the 100 individual 200 kHz-wide FM Radio channels are unused at any given location

    Book Reviews

    Get PDF

    High-level synthesis for medical image processing on Systems on Chip : a case study

    Get PDF
    Adaptive radiotherapy is a technique intended to increase the accuracy of radiotherapy. Currently, it is not clinically feasible due to the time required to process the images of patient anatomy. Hardware acceleration of image processing algorithms may allow them to be carried out in a clinically acceptable timeframe. This paper presents the experiences encountered using high-level synthesis tools to design an accelerated segmentation algorithm for computed tomography images targeted for implementation on a System on Chip. Hardware coprocessors and their interfaces for optimal threshold generation and 3D mean filter algorithms were synthesised from C++ functions. Hardware acceleration significantly outperformed the software only implementation. The high-level synthesis tools allowed the rapid exploration of different design options. However, hardware design knowledge was still necessary in order to interpret the results effectively

    Rapid prototyping and validation of FS-FBMC dynamic spectrum radio with simulink and ZynqSDR

    Get PDF
    This paper presents the research carried out in developing and targeting a novel real-time Dynamic Spectrum Access (DSA) Frequency Spread Filter Bank Multicarrier (FS-FBMC) transmitter prototype to programmable ‘ZynqSDR’ Software Defined Radio (SDR) hardware, and introduces a series of experiments used to validate the design’s ‘cognitive’ DSA capabilities. This transmitter is a proof of concept, that uses DSA techniques to enable Secondary Users (SUs) to access the band traditionally used for FM Radio broadcasting (88-108 MHz), and establish data communication channels in vacant parts of the FM Radio Primary User (PU) spectrum using a multicarrier modulation scheme with a Non Contiguous (NC) channel mask. Once implemented on the hardware, the transmitter is subjected to various FM Radio environments sampled from around Central Scotland, and it is demonstrated that it can dynamically adapt its NC transmitter mask in real time to protect the FM Radio signals it detects. A video is presented of this dynamic on-hardware spectral reconfiguration, and the reader is encouraged to view the video to appreciate the responsiveness of the design. An investigation into potential FBMC guardband sizes is carried out, with initial findings indicating a guardband of 200 kHz (either side of an FM Radio station) is required in order to prevent interference with the PUs. This paper also demonstrates the capabilities of the MATLAB¼/ Simulink ZynqSDR workflow, and provides a case study and reference design that we feel other researchers working in this field can benefit from

    Parametric binary dissection

    Get PDF
    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error

    Secondary user access for IoT applications in the FM radio band using FS-FBMC

    Get PDF
    In this paper a Dynamic Spectrum Access (DSA) Physical layer (PHY) technique is proposed that allows Secondary User (SU) access to the traditional FM Radio spectrum (88-108 MHz) for alternative data communication applications. FM radio waves have excellent propagation characteristics for long distance transmission, and have high levels of penetration through buildings. Using tools such as a structured geolocation database of licensed Primary User (PU) FM Radio transmitters, unlicensed SUs can access portions of the 20 MHz-wide band and transmit signals that place spectral ‘holes’ with suitable guard bands around all known PUs. Based on the PU protection ratios published by Ofcom and the FCC, the operation of a FBMC (Filter Bank Multi-Carrier) transmitter is demonstrated for an urban environment, and through ‘field test’ simulation it is shown that the Out Of Band (OOB) leakage of the proposed PHY (energy in the ‘holes’ that can interfere with the PU) is 47 dB lower than that of using an equivalent OFDM PHY. The results show that the proposed PHY is a suitable candidate for DSA-SU communication (e.g. in smart city IoT applications), whilst ensuring the integrity of incumbent PU signals

    A perpetual switching system in pulmonary capillaries

    Get PDF
    Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics

    Wideband TV white space transceiver design and implementation

    Get PDF
    For transceivers operating in television white space (TVWS), frequency agility and strict spectral mask fulfilments are vital. In the UK, TVWS covers a 320 MHz wide frequency band in the UHF range, and the aim of this paper is to present a wideband digital up- and down converter for this scenario. Sampling at radio frequency (RF), a two stage digital conversion is presented, which consists of a polyphase filter for implicit upsampling and decimation, and a filter bank-based multicarrier approach to resolve the 8MHz channels within the TVWS band. We demonstrate that the up- and down-conversion of 40 such channels is hardly more costly than that of a single channel. Appropriate filter design can satisfy the mandated spectral mask and control the reconstruction error. An FPGA implementation is discussed, capable of running the wideband transceiver on a single Virtex-7 device with sufficient word length to preserve the spectral mask requirements of the system

    Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

    Get PDF
    The AMD RFSoC (Radio Frequency System on Chip) architecture has gained significant attention within the Software Defined Radio (SDR) community for its integration of Radio Frequency (RF) frontend, FPGA fabric and Linux-capable Arm-based processing system in a single package. Despite its accessibility to researchers via the RFSoC 2x2 and RFSoC 4x2 development board platforms, its adoption within the GNU Radio community has been limited. This work demonstrates the potential of combining RFSoC with GNU Radio by utilizing a bidirectional QSFP network link to transmit and receive a wideband Orthogonal Frequency-Division Multiplexing (OFDM) signal. Using the remote procedure calls we are able to control the Tx/Rx center frequency and RFSoCs Digital Up/Down Converter (DUC/DDC) rates from the host PC to achieve runtime configurable bandwidth. Additional signal inspection and visualisation is implemented using existing GNU Radio GUI widgets and analysis blocks

    Streaming Convolutional Neural Network FPGA architecture for RFSoC data converters

    Get PDF
    This paper presents a novel Convolutional Neural Network (CNN) FPGA architecture designed to perform processing of radio data in a streaming manner without interruption. The proposed architecture is evaluated for radio modulation classification tasks implemented on an AMD RFSoC 2x2 development board and operating in real-time. The proposed architecture leverages optimisation such as the General Matrix-to-Matrix (GEMM) transform, on-chip weights, fixed-point arithmetic, and efficient utilisation of FPGA resources to achieve constant processing of a stream of samples. The performance of the proposed architecture is demonstrated through accuracy results obtained during live modulation classification, while operating at a sampling frequency of 128 MHz before decimation. The proposed architecture demonstrates promising results for real-time, time-critical CNN applications
    • 

    corecore