
Strathprints Institutional Repository

Robinson, Fraser D and Crockett, Louise H and Nailon, William H and

Stewart, Robert W (2016) High-level synthesis for medical image

processing on systems on chip : a case study. In: 2016 26th International

Conference on Field Programmable Logic and Applications (FPL), 2016.

EPFL. ISBN 978-1-5090-0851-3 ,

http://dx.doi.org/10.1109/FPL.2016.7577390

This version is available at http://strathprints.strath.ac.uk/57498/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77033701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

High-Level Synthesis for Medical Image Processing

on Systems on Chip: A Case Study

Fraser D Robinson∗, Louise H Crockett†, William H Nailon‡, Robert W Stewart†

∗Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
†Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK

‡Department of Oncology Physics, Edinburgh Cancer Centre, Edinburgh, UK

Abstract—Adaptive radiotherapy is a technique intended to in-
crease the accuracy of radiotherapy. Currently, it is not clinically
feasible due to the time required to process the images of patient
anatomy. Hardware acceleration of image processing algorithms
may allow them to be carried out in a clinically acceptable
timeframe. This paper presents the experiences encountered
using high-level synthesis tools to design an accelerated segmen-
tation algorithm for computed tomography images targeted for
implementation on a System on Chip. Hardware coprocessors
and their interfaces for optimal threshold generation and 3D
mean filter algorithms were synthesised from C++ functions.
Hardware acceleration significantly outperformed the software
only implementation. The high-level synthesis tools allowed the
rapid exploration of different design options. However, hardware
design knowledge was still necessary in order to interpret the
results effectively.

I. INTRODUCTION

Adaptive radiotherapy aims to improve the accuracy of

radiotherapy by adapting the original treatment plan based on

computed tomography (CT) images of the patient at the time

of treatment. Currently, this is not clinically feasible due to the

time required to process the images and adapt the treatment

plan. Hardware acceleration of these algorithms may allow

them to be carried out in a clinically acceptable timeframe of

the order of one minute.

Field programmable gate arrays (FPGA) have been shown

to be capable of performing image processing algorithms faster

than other types of processor[1], [2]. Hardware implementa-

tions of the image processing and dose calculation algorithms

using FPGA may therefore make adaptive radiotherapy a clini-

cal possibility. The relatively recent introduction of Systems on

Chip (SoC), where a multi-core central processing unit (CPU)

is closely integrated to FPGA fabric, present the possibility

of achieving greater performance by allowing algorithms to

be partitioned between hardware and software in order to

maximize the benefits of each architecture.

A major drawback of hardware acceleration is the effort

required to develop an efficient hardware design for the algo-

rithm. The ability to partition sections of the design between

hardware and software further increases the design options

that need to be explored in order to produce the most efficient

implementation. High-level synthesis tools aim to allow the

designer to direct the synthesis of hardware from an algorithm

description in a high-level software language. These tools are

intended to increase the rate at which different design solutions

C++ Description

Hardware

Synthesis

Results Evaluation

directive

pragmas

refactoring

Fig. 1. High-level synthesis workflow.

can be explored. This is particularly useful for more complex

algorithms such as those required for adaptive radiotherapy.

It is the aim of the wider work of which this study forms a

part, to accelerate algorithms for adaptive radiotherapy using

hardware coprocessors.

This paper presents the experiences encountered using high-

level synthesis tools to design an accelerated segmentation

algorithm for segmenting CT images. The algorithm generated

optimal thresholds and applied a local filtering operation. It

was targeted for implementation on an SoC.

II. METHODOLOGY

The Xilinx SDSoC 2015.4 development environment, which

incorporates the Vivado HLS 2015.4 tool, was used to develop

a hardware accelerated implementation of a segmentation

algorithm from a description written in C++. The design was

targeted for implementation on a Xilinx Zynq Z7020 SoC,

which integrates a dual-core CPU with an 85,000 logic cell

FPGA.

CT image data of a phantom normally used for the purposes

of quality assurance testing was obtained. The objective of

the algorithm was to generate optimal thresholds in order to

segment the CT image. The method for optimal threshold

determination was based on Otsu’s method[3]. A 3D mean

filter was implemented to reduce noise in the image prior to

applying the optimal thresholds to segment the image.

The Vivado HLS tool was used to synthesise hardware

coprocessors for implementation in the FPGA fabric from C++

functions describing the threshold generation and mean filter

algorithms. This process was an iterative one to achieve the

best performance by directing the hardware synthesis through

a combination of directive pragmas and code refactoring, as

shown in figure 1.

CPU FPGA Fabric

ZYNQ

Threshold

Generator

Mean

Filter

S
y
s
te

m

M
e
m

o
ry

DMA

Engine

DMA

Engine

Fig. 2. Schematic diagram of segmentation design.

The SDSoC environment was used to generate efficient

interfaces between the hardware coprocessors and the rest

of the system. Similarly to the Vivado HLS tool, different

interfacing options were explored through a combination of

directive pragmas and code refactoring, as shown in figure 1.

This allowed options such as interface port and data caching to

be explored. The Zynq has two types of interface port available

for transferring significant amounts of data; the accelerator

coherency port (ACP) and the AXI FIFO interfaces (AFI).

The ACP is capable of the same data throughput as a single

AFI, but provides cache coherent access to system memory.

The AFI do not provide cache coherency, however there are

four of these available, which may be able to produce higher

data throughput than the single ACP. Two different types of

direct memory access (DMA) engines were investigated for

transferring data between system memory and hardware. The

simpler of the two DMA engines requires that the data is

located in physically contiguous memory. The more complex

DMA engine, the scatter-gather DMA, is able to access data

distributed throughout system memory. When using the AFI

with the simple DMA, the physically contiguous areas of

system memory used to store data can be marked as either

cacheable or non-cacheable. Figure 2 shows a schematic

diagram of the system.

III. RESULTS

Table I shows the algorithm execution times for the interface

configurations tested. It also shows the average execution time

for the algorithm being executed purely in software on the

Zynq’s CPU. It can be seen that all of the implementations

using hardware acceleration significantly outperform the soft-

ware implementation with the worst case being 13 times faster.

The best performing implementation used the simple DMA

engine and the ACP to produce around a 60 times speedup over

software and a 4.5 times speedup over the worst performing

hardware implementation.

IV. DISCUSSION

The high-level synthesis tools used here allowed the rapid

exploration of different design options to implement hardware

coprocessors to accelerate the segmentation algorithm. The Vi-

vado HLS tool is incorporated within the SDSoC environment

and the two complement each other. The Vivado HLS tool

was used to produce optimal hardware designs at the C++

TABLE I
AVERAGE ALGORITHM EXECUTION TIMES

Software 887.43ms

Hardware

DMA ACP AFI cached AFI non-cached

Simple 14.82ms 16.72ms 66.81ms

Scatter-Gather 17.51ms 20.42ms n/a

function level, while the SDSoC tool was used to optimise

the design at a system level. While it can be seen from the

results presented here that every implementation utilising the

hardware coprocessors significantly outperformed the software

implementation, it is also clear that the best performing

implementation displays a substantial improvement over the

other hardware coprocessor implementations. This highlights

the advantages of fully exploring the design options with

regards to software/hardware interfacing.

The Vivado HLS tool enabled a variety of hardware designs

to be produced quickly through the specification of directive

pragmas and code refactoring. This is particularly useful for

complex algorithms where the burden of manually developing

multiple solutions for comparison would be arduous. However,

where the desired hardware structure is known, utilising ex-

isting pre-optimised blocks may produce more advantageous

results and save time. This example also highlights the impor-

tance of hardware design knowledge when using high-level

synthesis tools in order to interpret the results of synthesis

and to know when a more efficient solution is possible.

V. CONCLUSION AND FUTURE WORK

The use of high-level synthesis tools can greatly increase the

rate at which efficient hardware designs can be produced. This

is particularly the case for designs targeted for implementation

on SoC devices where the range of design options is expanded

by the ability to partition the design between hardware and

software. High-level synthesis tools are not yet a panacea for

good hardware design, however. Hardware design knowledge

is still necessary in order to interpret the results effectively

and guide the tools to synthesise the optimal design.

It is intended to extend this work by accelerating further

algorithms pertinent to adaptive radiotherapy using hardware

coprocessors and apply these to patient image data.

ACKNOWLEDGEMENTS

This work was generously supported by the Engineering and

Physical Sciences Research Council grant number 1531683.

REFERENCES

[1] F. Grüll and U. Kebschull, “Biomedical image processing and recon-
struction with dataflow computing on FPGAs,” in 24th Int. Conf. on Field

Programmable Logic and Applications (FPL), Munich. IEEE, Sep. 2014,
pp. 1–2.

[2] O. Dandekar and R. Shekhar, “FPGA-Accelerated Deformable Image
Registration for Improved Target-Delineation During CT-Guided Inter-
ventions,” IEEE Trans.Biomed.Circuits and Syst., vol. 1, no. 2, pp. 116–
127, Jun. 2007.

[3] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,”
IEEE Trans. Syst. Man Cybern., vol. 9, no. 1, pp. 62–66, 1979.

