117 research outputs found

    The calpastatin-derived calpain inhibitor CP1B reduces mRNA expression of matrix metalloproteinase-2 and-9 and invasion by leukemic THP-1 cells

    Get PDF
    The ubiquitous proteases ΞΌ- and m-calpain are Ca2+-dependent cysteine endopeptidases. Besides involvement in a variety of physio(patho)logical processes, recent studies suggest a pivotal role of calpains in differentiation of hematopoietic cells and tumor cell invasion. However, the precise actions of calpains and their endogenous inhibitor, calpastatin, in these processes are only partially understood. Here we have studied the role of the calpain/calpastatin system in the invasion of leukemic cells under basal and differentiationstimulating conditions. To further differentiate the human leukaemic cell line THP-1 (monocytic), the cells were treated for 24 hours with the differentiationstimulating reagents phorbol 12-myristate 13-acetate (PMA) and dimethyl sulfoxide (DMSO). Macrophage and granulocytelike differentiation was confirmed by induction of vimentin expression as well as by microscopic and fluorescence assisted cytometric analysis. Extracellular matrix (ECM) invasion of both the basal and differentiation stimulated cells in a Matrigel assay was inhibited by preincubation of the cells with the specific calpain inhibitor CP1B for 24 hours. Inhibition of invasiveness correlated with decreased mRNA expression and secretion of the matrix metalloproteinases MMP-2 and MMP-9. In contrast, addition of CP1B only during the invasion process did neither influence transmigration nor MMP release. This is the first report showing that the calpain/calpastatin system mediates MMPmRNA expression of the leukemic THP-1 cells and as a consequence their invasiveness

    Human ΞΌ-calpain: Simple isolation from erythrocytes and characterization of autolysis fragments

    Get PDF
    Heterodimeric μ-calpain, consisting of the large (80 kDa) and the small (30 kDa) subunit, was isolated and purified from human erythrocytes by a highly reproducible four-step purification procedure. Obtained material is more than 95% pure and has a specific activity of 6 - 7 mU/mg. Presence of contaminating proteins could not be detected by HPLC and sequence analysis. During storage at -80 °C the enzyme remains fully activatable by Ca²⁺, although the small subunit is partially processed to a 22 kDa fragment. This novel autolysis product of the small subunit starts with the sequence (60)RILG and is further processed to the known 18 kDa fragment. Active forms and typical transient and stable autolysis products of the large subunit were identified by protein sequencing. In casein-zymograms only the activatable forms 80 kDa+30 kDa, 80 kDa+22 kDa and 80 kDa+18 kDa displayed caseinolysis

    The Shifting Imaginaries of Corporate Crime

    Get PDF
    This article begins by setting out an analysis of the process of conventionalizing corporate crime that arises from the symbiotic relationship between states and corporations. Noting briefly the empirical characteristics of four broad categories of corporate crime and harm, the article then turns to explore the role of the state in its production and reproduction. We then problematize the role of the state in the reproduction of corporate crime at the level of the global economy, through the β€œcrimes of globalization” and β€œecocide,” warning of the tendency in the research literature to oversimplify the role of states and of international organizations. The article finishes by arguing that, as critical academics, it is our role to ensure that corporate crime is never normalized and fully conventionalized in advanced capitalist societies

    GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites

    Get PDF
    As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/

    Pathway Analysis for Genome-Wide Association Study of Basal Cell Carcinoma of the Skin

    Get PDF
    Recently, a pathway-based approach has been developed to evaluate the cumulative contribution of the functionally related genes for genome-wide association studies (GWASs), which may help utilize GWAS data to a greater extent.In this study, we applied this approach for the GWAS of basal cell carcinoma (BCC) of the skin. We first conducted the BCC GWAS among 1,797 BCC cases and 5,197 controls in Caucasians with 740,760 genotyped SNPs. 115,688 SNPs were grouped into gene transcripts within 20 kb in distance and then into 174 Kyoto Encyclopedia of Genes and Genomes pathways, 205 BioCarta pathways, as well as two positive control gene sets (pigmentation gene set and BCC risk gene set). The association of each pathway with BCC risk was evaluated using the weighted Kolmogorov-Smirnov test. One thousand permutations were conducted to assess the significance.Both of the positive control gene sets reached pathway p-values<0.05. Four other pathways were also significantly associated with BCC risk: the heparan sulfate biosynthesis pathway (p β€Š=β€Š 0.007, false discovery rate, FDR β€Š=β€Š 0.35), the mCalpain pathway (p β€Š=β€Š 0.002, FDR β€Š=β€Š 0.12), the Rho cell motility signaling pathway (p β€Š=β€Š 0.011, FDR β€Š=β€Š 0.30), and the nitric oxide pathway (p β€Š=β€Š 0.022, FDR β€Š=β€Š 0.42).We identified four pathways associated with BCC risk, which may offer new insights into the etiology of BCC upon further validation, and this approach may help identify potential biological pathways that might be missed by the standard GWAS approach

    Under-regulated and unaccountable?:Explaining variation in stop and search rates in Scotland, England and Wales

    Get PDF
    From a position of near parity in 2005/6, by 2012/13 recorded search rates in Scotland exceeded those in England/Wales seven times over. This divergence is intriguing given the demands placed on the police, and the legal capacity to deal with these are broadly similar across the two jurisdictions. The aim of this paper is to unpack this variation. Using a comparative casestudy approach, the paper examines the role of structural β€˜top-down’ determinants of policing: substantive powers of search, rules and regulations, and scrutiny. Two arguments are presented. First, we argue that the remarkable rise of stop and search in Scotland has been facilitated by weak regulation and safeguards. Second, we argue that divergence between the two jurisdictions can also be attributed to varying levels of political and public scrutiny, caused, in part, by viewing stop and search almost exclusively through the prism of β€˜race’. In Scotland, the significance of these factors is made evident by dint of organisational developments within the last decade; by the introduction of a target driven high-volume approach to stop and search in Strathclyde police force circa 1997 onwards; and the national roll-out of this approach following the single service merger in April 2013. The salient point is that the Strathclyde model was not hindered by legal rules and regulations, nor subject to policy and political challenge; rather a high discretion environment enabled a high-volume approach to stop and search to flourish

    Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

    Get PDF
    As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification

    MDL28170, a Calpain Inhibitor, Affects Trypanosoma cruzi Metacyclogenesis, Ultrastructure and Attachment to Rhodnius prolixus Midgut

    Get PDF
    BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. CONCLUSIONS/SIGNIFICANCE: The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of these molecules on the interaction with both invertebrate and vertebrate hosts, it is interesting to improve knowledge on these molecules in T. cruzi

    The Atypical Calpains: Evolutionary Analyses and Roles in Caenorhabditis elegans Cellular Degeneration

    Get PDF
    The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover
    • …
    corecore