147 research outputs found

    Taking a Closer Look at the Disturbed Human Gut Microbiome: A Study of the Interplay between E. faecalis and variant E. coli Mutants.

    Get PDF
    This research project aims to identify the interplay between various E. coli strains (isolated from mice) and E. faecalis both of which play crucial roles in the human gut microbiome. E. faecalis can drive inflammation in the gut microbiome (Langfelder, et al. 2019). The mouse isolated E. coli that I am working with is being compared to the results of clinical strains of E. coli as the project goes on. We know due to Dr. Bleich’s sequencing work that more E. coli in the mouse model gut microbiome leads to more E. faecalis; but the question is: ‘Why?’ and ‘If there are more E. faecalis present will it lead to more E. coli?’We also know from other studies as well as Dr. Bleich’s sequencing data, that L-Ornithine production from E. faecalis’ biofilm can act as signaling molecule to increase expression of siderophores in E. coli. when Iron is limited (Keogh, Damien, et al. 2016). We experimented with DTPA (Pentetic Acid, metal chelator for Iron) to identify variations in size and morphology in the bacterial colonies. We know the morphologies can change based on genetic and environmental cues as well (Serra, D. O., et al. 2013) which is the purpose for control variables, to maintain consistency throughout experimentation

    Subclinical Epileptiform Process in Patients with Unipolar Depression and Its Indirect Psychophysiological Manifestations

    Get PDF
    BACKGROUND: According to recent clinical findings epileptiform activity in temporolimbic structures may cause depressive and other psychiatric symptoms that may occur independently of any seizure in patient's history. In addition in these patients subclinical seizure-like activity with indirect clinical manifestations likely may occur in a form of various forms of cognitive, affective, memory, sensory, behavioral and somatic symptoms (the so-called complex partial seizure-like symptoms). A typical characteristic of epileptiform changes is increased neural synchrony related to spreading of epileptiform activity between hemispheres even in subclinical conditions i.e. without seizures. These findings suggest a hypothesis that measures reflecting a level of synchronization and information transfer between hemispheres could reflect spreading of epileptiform activity and might be related to complex partial seizure-like symptoms. METHODS AND FINDINGS: Suitable data for such analysis may provide various physiological signals reflecting brain laterality, as for example bilateral electrodermal activity (EDA) that is closely related to limbic modulation influences. With this purpose we have performed measurement and analysis of bilateral EDA and compared the results with psychometric measures of complex partial seizure-like symptoms, depression and actually experienced stress in 44 patients with unipolar depression and 35 healthy controls. The results in unipolar depressive patients show that during rest conditions the patients with higher level of complex partial seizure like symptoms (CPSI) display increased level of EDA transinformation (PTI) calculated between left and right EDA records (Spearman correlation between CPSI and PTI is r = 0.43, p = 0.004). CONCLUSIONS: The result may present potentially useful clinical finding suggesting that increased EDA transinformation (PTI) could indirectly indicate increased neural synchrony as a possible indicator of epileptiform activity in unipolar depressive patients treated by serotoninergic antidepresants

    Spatiotemporal variation of the epifaunal assemblages associated to Sargassum muticum on the NW Atlantic coast of Morocco

    Get PDF
    Epifaunal assemblages inhabiting the non-indigenous macroalga Sargassum muticum (Yendo) Fensholt were investigated on two physically distinct intertidal rocky (S1) and sandy (S2) sites along the Atlantic coast of Morocco. The objective of this study was to test whether the habitat-forming marine alga S. muticum invasive in these sites supported different epifaunal assemblages under different environmental conditions and through time. The gastropods Steromphala umbilicalis, S. pennanti, and Rissoa parva and the isopod Dynamene bidentata were the most contributive species to the dissimilarity of epifaunal assemblage structure between both sites throughout seasons. SIMPER analysis showed a dissimilarity of 58.3-78.5% in the associated species composition of S. muticum between study sites with respect to sampling season. Species diversity and total abundance were significantly higher at the rocky site compared to the sandy site. PERMANOVA analyses showed significant differences of associated epifaunal assemblage structure for the season and site interaction. Accordingly, site and season were determinant factors conditioning the role of habitat in structuring epifaunal assemblages.info:eu-repo/semantics/publishedVersio

    Non-Overlapping Functions for Pyk2 and FAK in Osteoblasts during Fluid Shear Stress-Induced Mechanotransduction

    Get PDF
    Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2+/+ and Pyk2−/− primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2+/+ and Pyk2−/− osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK−/− osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts

    Diminished Medial Prefrontal Activity behind Autistic Social Judgments of Incongruent Information

    Get PDF
    Individuals with autism spectrum disorders (ASD) tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD) male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC), and dorsal medial prefrontal cortex (dmPFC) than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information

    Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

    Get PDF
    Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others

    Prefrontal Cortex Based Sex Differences in Tinnitus Perception: Same Tinnitus Intensity, Same Tinnitus Distress, Different Mood

    Get PDF
    BACKGROUND: Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. METHODOLOGY: The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. CONCLUSIONS: Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC) extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC), parahippocampal (PHC) areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC). The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional imaging studies related to tinnitus

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states

    The neuroscience of suicidal behaviors: what can we expect from endophenotype strategies?

    Get PDF
    Vulnerability to suicidal behavior (SB) is likely mediated by an underlying genetic predisposition interacting with environmental and probable epigenetic factors throughout the lifespan to modify the function of neuronal circuits, thus rendering an individual more likely to engage in a suicidal act. Improving our understanding of the neuroscience underlying SBs, both attempts and completions, at all developmental stages is crucial for more effective preventive treatments and for better identification of vulnerable individuals. Recent studies have characterized SB using an endophenotype strategy, which aims to identify quantitative measures that reflect genetically influenced stable changes in brain function. In addition to aiding in the functional characterization of susceptibility genes, endophenotypic research strategies may have a wider impact in determining vulnerability to SB, as well as the translation of human findings to animal models, and vice versa. Endophenotypes associated with vulnerability to SB include impulsive/aggressive personality traits and disadvantageous decision making. Deficits in realistic risk evaluation represent key processes in vulnerability to SB. Serotonin dysfunction, indicated by neuroendocrine responses and neuroimaging, is also strongly implicated as a potential endophenotype and is linked with impulsive aggression and disadvantageous decision making. Specific endophenotypes may represent heritable markers for the identification of vulnerable patients and may be relevant targets for successful suicide prevention and treatments
    corecore