29 research outputs found

    Stereophotogrammetric approaches to multi-segmental kinematics of the thoracolumbar spine: a systematic review

    Get PDF
    Spine disorders are becoming more prevalent in today's ageing society. Motion abnormalities have been linked to the prevalence and recurrence of these disorders. Various protocols exist to measure thoracolumbar spine motion, but a standard multi-segmental approach is still missing. This study aims to systematically evaluate the literature on stereophotogrammetric motion analysis approaches to quantify thoracolumbar spine kinematics in terms of measurement reliability, suitability of protocols for clinical application and clinical significance of the resulting functional assessment

    Assessment of foraminal decompression following discoplasty using a combination of ex vivo testing and numerical tools

    Get PDF
    : Percutaneous Cement Discoplasty (PCD) is a minimally invasive surgical technique to treat degenerated intervertebral discs. When the disc is severely degenerated, the vacuum observed in place of the nucleus pulposus can be filled with bone cement to restore the disc height, open the foramen space, and relieve pain. This study aimed to evaluate the foramen geometry change due to PCD, in the loaded spine. Cadaveric spines (n = 25) were tested in flexion and extension while Digital Image Correlation (DIC) measured displacements and deformations. Tests were performed on simulated pre-operative condition (nucleotomy) and after PCD. Registering DIC images and the 3D specimen geometry from CT scans, a 3D model of the specimens aligned in the experimental pose was obtained for nucleotomy and PCD. Foramen space volume was geometrically measured for both conditions. The volume of cement injected was measured to explore correlation with the change of foramen space. PCD induced a significant overall foraminal decompression in both flexion (foramen space increased by 835 ± 1289 mm3, p = 0.001) and extension (1205 ± 1106 mm3, p < 0.001), confirming that the expected improvements of PCD show also during spine motion. Furthermore, in extension when the foramen is the most challenged, the impact of PCD on the foramen correlated with the injected cement volume

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical & pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National & Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus

    Introduction of innovations in joint arthroplasty: Recommendations from the 'EFORT implant and patient safety initiative'

    Get PDF
    With the implementation of the new MDR 2017/745 by the European Parliament, more robust clinical and pre-clinical data will be required due to a more stringent approval process. The EFORT Implant and Patient Safety Initiative WG1 ‘Introduction of Innovation’, combined knowledge of orthopaedic surgeons, research institutes, orthopaedic device manufacturers, patient representatives and regulatory authorities to develop a comprehensive set of recommendations for the introduction of innovations in joint arthroplasty within the boundaries of MDR 2017/745. Recommendations have been developed to address key questions about pre-clinical and clinical requirements for the introduction of new implants and implant-related instrumentation with the participation of a steering group, invited by the EFORT Board in dialogue with representatives from European National Societies and Speciality Societies. Different degrees of novelty and innovation were described and agreed on in relation to when surgeons can start, using implants and implant-related instrumentation routinely. Before any clinical phase of a new implant, following the pre-market clinical investigation or the equivalent device PMCF pathway, it is a common understanding that all appropriate pre-clinical testing (regulatory mandatory and evident state of the art) – which has to be considered for a specific device – has been successfully completed. Once manufacturers receive the CE mark for a medical device, it can be used in patients routinely when a clinical investigation has been conducted to demonstrate the conformity of devices according to MDR Article 62 or full equivalence for the technical, biological and clinical characteristics has been demonstrated (MDR, Annex XIV, Part A, 3.) and a PMCF study has been initiated

    Verkaufsförderung. Strategie und Taktik

    No full text

    Biomechanical consequences of cement discoplasty: An in vitro study on thoraco-lumbar human spines

    Get PDF
    With the ageing of the population, there is an increasing need for minimally invasive spine surgeries to relieve pain and improve quality of life. Percutaneous Cement Discoplasty is a minimally invasive technique to treat advanced disc degeneration, including vacuum phenomenon. The present study aimed to develop an in vitro model of percutaneous cement discoplasty to investigate its consequences on the spine biomechanics in comparison with the degenerated condition. Human spinal segments (n = 27) were tested at 50% body weight in flexion and extension. Posterior disc height, range of motion, segment stiffness, and strains were measured using Digital Image Correlation. The cement distribution was also studied on CT scans. As main result, percutaneous cement discoplasty restored the posterior disc height by 41% for flexion and 35% for extension. Range of motion was significantly reduced only in flexion by 27%, and stiffness increased accordingly. The injected cement volume was 4.56 ± 1.78 ml (mean ± SD). Some specimens (n = 7) exhibited cement perforation of one endplate. The thickness of the cement mass moderately correlated with the posterior disc height and range of motion with different trends for flexions vs. extension. Finally, extreme strains on the discs were reduced by percutaneous cement discoplasty, with modified patterns of the distribution. To conclude, this study supported clinical observations in term of recovered disc height close to the foramen, while percutaneous cement discoplasty helped stabilize the spine in flexion and did not increase the risk of tissue damage in the annulus

    NSR catalysis studied using scanning tunnelling microscopy

    No full text
    In this paper we report the fabrication of model catalysts prepared to understand the structure of the BaO surface. This utilises the 'inverse' catalyst method, that is, the oxide layer is fabricated onto the top of a metal single crystal surface. We show that we can atomically resolve the surface structure of BaO(111) and that it presents a (2x2) reconstruction at its surface. Under other dosing conditions we can produce a layer which is metastable at 573K, which we believe to be the peroxide, BaO2. We have shown that the BaO layer can store NOx from a mix of NO and oxygen, even under the extremely low exposure conditions of UHV, proving that the NOx storage process is a facile one. The results indicate that it is not necessary to have NO2 in the gas phase in order to store NOx.</p
    corecore