33 research outputs found

    Post-haemorrhagic hydrocephalus is associated with poorer surgical and neurodevelopmental sequelae than other causes of infant hydrocephalus.

    Get PDF
    PURPOSE: This retrospective cohort study aimed to investigate the surgical and neurodevelopmental outcomes (NDO) of infant hydrocephalus. We also sought to determine whether these outcomes are disproportionately poorer in post-haemorrhagic hydrocephalus (PHH) compared to other causes of infant hydrocephalus. METHODS: A review of all infants with hydrocephalus who had ventriculoperitoneal (VP) shunts inserted at Great Ormond Street Hospital (GOSH) from 2008 to 2018 was performed. Demographic, surgical, neurodevelopmental, and other clinical data extracted from electronic patient notes were analysed by aetiology. Shunt survival, NDO, cerebral palsy (CP), epilepsy, speech delay, education, behavioural disorders, endocrine dysfunction, and mortality were evaluated. RESULTS: A total of 323 infants with median gestational age of 37.0 (23.29-42.14) weeks and birthweight of 2640 g (525-4684 g) were evaluated. PHH was the most common aetiology (31.9%) and was associated with significantly higher 5-year shunt revision rates, revisions beyond a year, and median number of revisions than congenital or "other" hydrocephalus (all p < 0.02). Cox regression demonstrated poorest shunt survival in PHH, related to gestational age at birth and corrected age at shunt insertion. PHH also had the highest rate of severe disabilities, increasing with age to 65.0% at 10 years, as well as the highest CP rate; only genetic hydrocephalus had significantly higher endocrine dysfunction (p = 0.01) and mortality rates (p = 0.04). CONCLUSIONS: Infants with PHH have poorer surgical and NDO compared to all other aetiologies, except genetic hydrocephalus. Research into measures of reducing neurodisability following PHH is urgently required. Long-term follow-up is essential to optimise support and outcomes

    Reliability of race assessment based on the race of the ascendants: a cross-sectional study

    Get PDF
    BACKGROUND: Race is commonly described in epidemiological surveys based on phenotypic characteristics. Training of interviewers to identify race is time-consuming and self identification of race might be difficult to interpret. The aim of this study was to determine the agreement between race definition based on the number of ascendants with black skin colour, with the self-assessment and observer's assessment of the skin colour. METHODS: In a cross-sectional study of 50 women aged 14 years or older, from an outpatient clinic of an University affiliated hospital, race was assessed through observation and the self-assignment of the colour of skin and by the number of black ascendants including parents and grandparents. Reliability was measured through Kappa coefficient. RESULTS: Agreement beyond chance between self-assigned and observed skin colour was excellent for white (0.75 95% CI 0.72–0.78) and black women (0.89 95% CI 0.71–0.79), but only good for participants with mixed colour (0.61 95% CI 0.58–0.64), resulting in a global kappa of 0.75 (95% CI 0.71–0.79). However, only a good agreement for mixed women was obtained. The presence of 3 or more black ascendants was highly associated with observed and self-assessed black skin colour. Most women self-assigned or observed as white had no black ascendants. CONCLUSIONS: The assessment of race based on the race of ascendants showed reasonable agreement with the ascertainment done by trained interviewers and with the self-report of race. This method may be considered for evaluation of race in epidemiological surveys, since it is less time-consuming than the evaluation by interviewers

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes
    corecore