6 research outputs found

    Tissue-Specific Coupling between Insulin/IGF and TORC1 Signaling via PRAS40 in Drosophila

    Get PDF
    PRAS40 has recently been identified as a protein that couples insulin/IGF signaling (IIS) to TORC1 activation in cell culture; however, the physiological function of PRAS40 is not known. In this study, we investigate flies lacking PRAS40. Surprisingly, we find both biochemically and genetically that PRAS40 couples IIS to TORC1 activation in a tissue-specific manner, regulating TORC1 activity in ovaries but not in other tissues of the animal. PRAS40 thereby regulates fertility but not growth of the fly, allowing distinct physiological functions of TORC1 to be uncoupled. We also show that the main function of PRAS40 in vivo is to regulate TORC1 activity, and not to act as a downstream target and effector of TORC1. Finally, this work sheds some light on the question of whether TORC1 activity is coupled to IIS in vivo

    Desensitisation of Notch signalling through dynamic adaptation in the nucleus

    Get PDF
    During embryonic development, signalling pathways orchestrate organogenesis by controlling tissue‐specific gene expression programmes and differentiation. Although the molecular components of many common developmental signalling systems are known, our current understanding of how signalling inputs are translated into gene expression outputs in real‐time is limited. Here we employ optogenetics to control the activation of Notch signalling during Drosophila embryogenesis with minute accuracy and follow target gene expression by quantitative live imaging. Light‐induced nuclear translocation of the Notch Intracellular Domain (NICD) causes a rapid activation of target mRNA expression. However, target gene transcription gradually decays over time despite continuous photo‐activation and nuclear NICD accumulation, indicating dynamic adaptation to the signalling input. Using mathematical modelling and molecular perturbations, we show that this adaptive transcriptional response fits to known motifs capable of generating near‐perfect adaptation and can be best explained by state‐dependent inactivation at the target cis‐regulatory region. Taken together, our results reveal dynamic nuclear adaptation as a novel mechanism controlling Notch signalling output during tissue differentiation
    corecore