39 research outputs found

    Characterization of Oxidative Lipidomics and Autophagy Induction in Chlamydomonas reinhardtii Under Abiotic Stress

    Full text link
    Autophagy constitutes an essential process triggered upon by oxidative stress that enables cells to recycle damaged biomolecules and organelles, which is eventually traced by immunodetection with anti-ATG8. In parallel with autophagy induction, carbon metabolism in Chlamydomonas reinhardtii under abiotic stress is diverged toward lipid biosynthesis and lipid droplet accumulation, which can be analyzed by a simple thin-layer chromatography and in vivo staining with the fluorescent probe BODIPY 493/503. We show the responses in Chlamydomonas cells exposed to mercury or cadmium (0–50 μM doses), as examples of oxidative stress-mediated changes in autophagy and lipid metabolism, monitored with the procedures described in this repor

    Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants

    Full text link
    Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networksThis work was funded by a grant from the Spanish Ministry of Economy and Competitiveness ( AGL2014–53771-R ). Alfonso Blázquez-Castro acknowledges funding under the Marie Skłodowska-Curie Action COFUND 2015 (EU project 713366 – InterTalentum

    The Early Oxidative Stress Induced by Mercury and Cadmium Is Modulated by Ethylene in Medicago sativa Seedlings

    Full text link
    Cadmium (Cd) and mercury (Hg) are ubiquitous soil pollutants that promote the accumulation of reactive oxygen species, causing oxidative stress. Tolerance depends on signalling processes that activate different defence barriers, such as accumulation of small heat sock proteins (sHSPs), activation of antioxidant enzymes, and the synthesis of phytochelatins (PCs) from the fundamental antioxidant peptide glutathione (GSH), which is probably modulated by ethylene. We studied the early responses of alfalfa seedlings after short exposure (3, 6, and 24 h) to moderate to severe concentration of Cd and Hg (ranging from 3 to 30 μM), to characterize in detail several oxidative stress parameters and biothiol (i.e., GSH and PCs) accumulation, in combination with the ethylene signalling blocker 1-methylcyclopropene (1-MCP). Most changes occurred in roots of alfalfa, with strong induction of cellular oxidative stress, H2O2 generation, and a quick accumulation of sHSPs 17.6 and 17.7. Mercury caused the specific inhibition of glutathione reductase activity, while both metals led to the accumulation of PCs. These responses were attenuated in seedlings incubated with 1-MCP. Interestingly, 1-MCP also decreased the amount of PCs and homophytochelatins generated under metal stress, implying that the overall early response to metals was controlled at least partially by ethylen

    Attenuation of mercury phytotoxicity with a high nutritional level of nitrate in alfalfa plants grown hydroponically

    Full text link
    Mercury (Hg) is one of the most dangerous pollutant heavy metals to the environment, which causes several toxic effects in plants upon accumulation, such as induction of oxidative stress. Nitrate (NO3 – ) is the prevalent form to incorporate nitrogen (N) in higher plants, through its reduction to nitrite (NO2 – ) by the enzyme nitrate reductase (NR). We studied the physiological alterations caused by Hg (0, 6 and 30 µM) in alfalfa plants grown at two different levels of NO3 – : low, (2 mM; LN), and high (12 mM; HN) for one week using a semi-hydroponic culture system. Several parameters of oxidative stress such as lipid peroxidation, chlorophyll content, biothiol concen tration, and ascorbate peroxidase (APX) and glutathione reductase (GR) activities showed that HN plants were less affected by Hg. Nitrate reductase activity and NO3 – concentration were also altered under Hg stress, with lower impact in plants nourished with high NO3 – . Our results highlight the importance of the NO3 – nutritional status to improve tolerance to toxic metals like H

    Synchrotron Radiation-Fourier transformed infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury

    Full text link
    Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. μSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 μM Cd and 15 μM Hg after short-term (24 h) treatments. This occurred in a context where metals triggered intracellular oxidative stress and chloroplast damage, along with autophagy induction by overexpressing AUTOPHAGY-RELATED PROTEIN 8 (ATG8). Thin layer chromatography analysis confirmed that toxic metals promoted remarkable changes in lipid profile, with higher degree of esterified fatty acid unsaturation as detected by gas chromatography coupled with mass spectrometry. Under Cd stress, there was specifically higher unsaturation of free fatty acids, while Hg led to stronger unsaturation in monogalactosyldiacylglycerol. μSR-FTIR spectroscopy proved as a valuable tool to identify biochemical alterations in microalgae, information that could be exploited to optimise approaches for metal decontaminationWork supported by the Spanish State Research Agency (AEI) (Spain) (projects AGL2014–53771-R and AGL2017–87591-R). The FTIR experiments were performed at MIRAS beamline at ALBA Synchrotron with the collaboration of ALBA staff and supported by travel grants for experiments No 2016091860 and 201702211

    Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings.

    Get PDF
    Summary • Here, the kinetics of oxidative stress responses of alfalfa ( Medicago sativa ) seedlings to cadmium (Cd) and mercury (Hg) (0, 3, 10 and 30 µ M ) exposure, expanding from a few minutes to 24 h, were studied. • Intracellular oxidative stress was analysed using 2 ′ ,7 ′ -dichlorofluorescin diacetate and extracellular hydrogen peroxide (H 2 O 2 ) production was studied with Amplex Red. Growth inhibition, concentrations of ascorbate, glutathione (GSH), homoglutathione (hGSH), Cd and Hg, ascorbate peroxidase (APX) activity, and expression of genes related to GSH metabolism were also determined. • Both Cd and Hg increased cellular reactive oxygen species (ROS) production and extracellular H 2 O 2 formation, but in different ways. The increase was mild and slow with Cd, but more rapid and transient with Hg. Hg treatments also caused a higher cell death rate, significant oxidation of hGSH, as well as increased APX activity and transient overexpression of glutathione reductase 2, glutamylcysteinyl synthetase, and homoglutathione synthetase genes. However, Cd caused minor alterations. Hg accumulation was one order of magnitude higher than Cd accumulation. • The different kinetics of early physiological responses in vivo to Cd and Hg might be relevant to the characterization of their mechanisms of toxicity. Thus, high accumulation of Hg might explain the metabolism poisoning observed in Hg-treated seedlings

    Importance of Post-Translational Modifications for Functionality of a Chloroplast-Localized Carbonic Anhydrase (CAH1) in Arabidopsis thaliana

    Get PDF
    Background: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. Methodology/Principal Findings: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. Conclusions/Significance: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.This work was supported by the Swedish Research Council (VR), the Kempe Foundations and Carl Tryggers Foundation to GS, and grant numbers BIO2006-08946 and BIO2009-11340 from the Spanish Ministerio de Ciencia e Innovación (MICINN) to A

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives

    Full text link
    Reactive oxygen species (ROS) are metabolic by-products in aerobic organisms including plants. Endogenously produced ROS act as cellular messengers and redox regulators involved in several plant biological processes, but excessive accumulation of ROS cause oxidative stress and cell damage. Understanding ROS signalling and stress responses requires precise imaging and quantification of local, subcellular and global ROS dynamics with high selectivity, sensitivity, and spatiotemporal resolution. Several fluorescent vital dyes have been tested so far, which helped to provide relevant spatially resolved information of oxidative stress dynamics in plants subjected to harmful environmental conditions. However, certain plant characteristics, such as high background fluorescence of plant tissues in vivo and antioxidant mechanisms, can interfere with ROS detection. The development of improved small-molecule fluorescent dyes and protein-based ROS sensors targeted to subcellular compartments will enable in vivo monitoring of ROS and redox changes in photosynthetic organismsThis work was funded by a grant from the Spanish Ministry of Economy and Competitiveness (AGL2014-53771-R
    corecore