70 research outputs found
Multiple-clone infections of Plasmodium vivax: definition of a panel of markers for molecular epidemiology
Submitted by Nuzia Santos ([email protected]) on 2016-02-29T17:46:50Z
No. of bitstreams: 1
Multiple-clone infections of Plasmodium.pdf: 5467763 bytes, checksum: b4719a5dd04db8f670d04a87ecc9303f (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2016-02-29T17:50:22Z (GMT) No. of bitstreams: 1
Multiple-clone infections of Plasmodium.pdf: 5467763 bytes, checksum: b4719a5dd04db8f670d04a87ecc9303f (MD5)Made available in DSpace on 2016-02-29T17:50:22Z (GMT). No. of bitstreams: 1
Multiple-clone infections of Plasmodium.pdf: 5467763 bytes, checksum: b4719a5dd04db8f670d04a87ecc9303f (MD5)
Previous issue date: 2015Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, BrasilUniversidade Federal de Mato Grosso. Hospital Julio Muller. Cuiabá, MT, BrasilFundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, BrasilBACKGROUND: Plasmodium vivax infections commonly contain multiple genetically distinct parasite clones. The detection of multiple-clone infections depends on several factors, such as the accuracy of the genotyping method, and the type and number of the molecular markers analysed. Characterizing the multiplicity of infection has broad implications that range from population genetic studies of the parasite to malaria treatment and control. This study compared and evaluated the efficiency of neutral and non-neutral markers that are widely used in studies of molecular epidemiology to detect the multiplicity of P. vivax infection.
METHODS: The performance of six markers was evaluated using 11 mixtures of DNA with well-defined proportions of two different parasite genotypes for each marker. These mixtures were generated by mixing cloned PCR products or patient-derived genomic DNA. In addition, 51 samples of natural infections from the Brazil were genotyped for all markers. The PCR-capillary electrophoresis-based method was used to permit direct comparisons among the markers. The criteria for differentiating minor peaks from artifacts were also evaluated.
RESULTS: The analysis of DNA mixtures showed that the tandem repeat MN21 and the polymorphic blocks 2 (msp1B2) and 10 (msp1B10) of merozoite surface protein-1 allowed for the estimation of the expected ratio of both alleles in the majority of preparations. Nevertheless, msp1B2 was not able to detect the majority of multiple-clone infections in field samples; it identified only 6 % of these infections. The merozoite surface protein-3 alpha and microsatellites (PvMS6 and PvMS7) did not accurately estimate the relative clonal proportions in artificial mixtures, but the microsatellites performed well in detecting natural multiple-clone infections. Notably, the use of a less stringent criterion to score rare alleles significantly increased the sensitivity of the detection of multi-clonal infections.
CONCLUSIONS: Depending on the type of marker used, a considerable amplification bias was observed, which may have serious implications for the characterization of the complexity of a P. vivax infection. Based on the performance of markers in artificial mixtures of DNA and natural infections, a minimum panel of four genetic markers (PvMS6, PvMS7, MN21, and msp1B10) was defined, and these markers are highly informative regarding the genetic variability of P. vivax populations
Nutrient‐efficient catfish‐based aquaponics for producing lamb's lettuce at two light intensities
ACKNOWLEDGMENTS
We acknowledge funding provided by FCT/MCTES (PIDDAC): LA/P/0045/2020 (ALiCE), UIDB/50020/2020 & UIDP/50020/2020 (LSRE-LCM), UIDB/00313/2020 & UIDP/00313/2020 (CQC-IMS) and Rede Nacional de Ressonância Magnética Nuclear (RNRMN, UC-NMR).BACKGROUND: Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 ∼mol m−2 s −1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS: After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability.
CONCLUSION: For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.info:eu-repo/semantics/publishedVersio
Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel)
Research funded by FEDER/COMPETE and Fundação para a Ciência e Tecnologia (FCT) via grants UIDB/00313/2020 and UIDP/00313/2020 to CQC, LA/P/0045/2020 to ALiCE, UIDB/50020/2020 and UIDP/50020/2020 to LSRE-LCM, and UIDB/MAR/04292/2020 to MARE, and to the Integrated Programme of SR&TD “Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate” (Centro-01-0145-FEDER-000018) and to Rede Nacional de Ressonância Magnética Nuclear (RNRMN, UC-NMR).Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel’s salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.info:eu-repo/semantics/publishedVersio
Crithmum maritimum L. (Sea Fennel)
Funding Information: Research funded by FEDER/COMPETE and Fundação para a Ciência e Tecnologia (FCT) via grants UIDB/00313/2020 and UIDP/00313/2020 to CQC, LA/P/0045/2020 to ALiCE, UIDB/50020/2020 and UIDP/50020/2020 to LSRE-LCM, and UIDB/MAR/04292/2020 to MARE, and to the Integrated Programme of SR&TD “Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate” (Centro-01-0145-FEDER-000018) and to Rede Nacional de Ressonância Magnética Nuclear (RNRMN, UC-NMR). Publisher Copyright: © 2024 by the authors.Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel’s salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.publishersversionpublishe
Worldwide Genetic Variability of the Duffy Binding Protein: Insights into Plasmodium vivax Vaccine Development
The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP) makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBPII), known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBPII sequences will allow us to determine the minimum number of haplotypes (MNH) to be included in a DBP-based vaccine of broad coverage. For that, all DBPII sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBPII genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total) would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBPII sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48–84%). In addition, to identify related subgroups of DBPII sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBPII sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBPII variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations
Human migration and the spread of malaria parasites to the New World
We examined the mitogenomes of a large global collection of human malaria parasites to explore how and when Plasmodium falciparum and P. vivax entered the Americas. We found evidence of a significant contribution of African and South Asian lineages to present-day New World malaria parasites with additional P. vivax lineages appearing to originate from Melanesia that were putatively carried by the Australasian peoples who contributed genes to Native Americans. Importantly, mitochondrial lineages of the P. vivax-like species P. simium are shared by platyrrhine monkeys and humans in the Atlantic Forest ecosystem, but not across the Amazon, which most likely resulted from one or a few recent human-to-monkey transfers. While enslaved Africans were likely the main carriers of P. falciparum mitochondrial lineages into the Americas after the conquest, additional parasites carried by Australasian peoples in pre-Columbian times may have contributed to the extensive diversity of extant local populations of P. vivax
- …