68 research outputs found

    Analysis of First Order Reversal Curves in the Thermal Hysteresis of Spin-crossover Nanoparticles within the Mechanoelastic Model

    Full text link
    The recently obtained spin-crossover nanoparticles are possible candidates for applications in the recording media industry as materials for data storage, or as pressure and temperature sensors. For these applications the intermolecular interactions and interactions between spin-crossover nanoparticles are extremely important, as they may be essential factors in triggering the transition between the two stable phases: the high-spin and low-spin ones. In order to find correlations between the distributions in size and interactions and the transition temperatures distribution, we apply the FORC (First Order Reversal Curves) method, using simulations based on a mechanoelastic model applied to 2D triangular lattices composed of molecules linked by springs and embedded in a surfactant. We consider two Gaussian distributions: one of the size of the nanoparticles and one of the elastic interactions between edge spin-crossover molecules and the surfactant molecules. In order to disentangle the kinetic and non-kinetic parts of the FORC distributions, we compare the results obtained for different temperature sweeping rates. We also show that the presence of few larger particles in a distribution centered around much smaller particles dramatically increases the hysteresis width.Comment: 14 pages, 5 figures, 2014 59-th MMM conferenc

    A theoretical approach for elastically driven cooperative switching of spin crossover compounds impacted by an ultrashot laser pulse

    Get PDF
    International audienceIn this paper we use an elastic model in order to study the elastically driven cooperative switching of spin crossover materials after femtosecond laser excitation. In this model, the molecules occupy a triangular lattice in open boundaries systems and are connected by springs. The volume change of a molecule between its two possible spin states, low-spin and high-spin, determines a variation of the spring length and therefore induces elastic interactions between molecules, which propagates throughout the whole sample as elastic distortions. This model is able to reproduce the multi-step out-of-equilibrium response to ultrashort laser excitation and especially the elastically-driven cooperative response. Then this model is developed in order to predict the behaviour of the system as a function of its different physical parameters, such as the magnitude of the elastic constant or the homogeneity of the photoexcitation. The contribution of the reorganisation of the molecular states during elastic steps, leading to clusters of high-spin molecules towards edge or corners is also revealed

    Data to support The Effect of Inert Dopant Ions on Spin-Crossover Materials is not Simply Controlled by Chemical Pressure

    Get PDF
    The spin-crossover temperature in [FexRu(1-x)(bpp)2][BF4]2 increases with increased ruthenium doping, which reflects a subtle interplay between the [Ru(bpp)2]2+ dopant molecules and the [Fe(bpp)2]2+ switching centres in the lattice

    Study of switching in spin transition compounds within the mechanoelastic model with realistic parameters

    No full text
    Here we reproduce the static and dynamical properties of spin-crossover complexes in the framework of the mechanoelastic model applied to triangular lattices. The switching processes between the high-spin and low-spin states are studied by combining the Monte Carlo method with the elastic lattice relaxation. The transition probabilities between the two states take into account intrinsic parameters, the values of which are approximated from experimental quantities (e.g., the energy gap, and the degeneracy ratio from the thermodynamic enthalpy and the entropy difference between the states), and the elastic force or elastic energy stored in the springs connecting the spin-changing centres. The value of the corresponding spring constant is estimated from the experimentally determined variation of the ligand-field strengths in the two spin states due to the cooperativity and the bulk modulus. Both simulated hysteresis loops and relaxation curves are in agreement with experimental data. Cooperativity related phenomena such as like-spin domain formation and the evolution of the interaction distribution with the HS fraction are also analysed

    Elastic models, lattice dynamics and finite size effects in molecular spin crossover systems

    Get PDF
    International audienceThe experimental studies of spin-crossover compounds switched in the last decade from bulk measurements and macroscopic observations to the nanoscale and microscopic approaches. In this context, new and sometimes unexpected behaviours have been documented, which could be partially described only by the classical phenomenological models developed in the last period of the last century. In this context, the development of more complex models, able to reproduce the nucleation and domain propagation within the material, has proved to be not a whim of some theoreticians but a necessity, which facilitated the full understanding of observed phenomena and even made premises for further experiments. Here, we present and analyse various elastic models identifying their common points and differences and discuss how they can be used for the study of microscopic phenomena as the cluster formation, stability and propagation or for the study of finite size effects in spin-crossover nanoparticles, with open boundary conditions or embedded in various matrices

    Langevin dynamics simulation of a one-dimensional linear spin chain with long-range interactions

    No full text
    In this paper we study the critical behavior of a simple one-dimensional rotor spin in the form of a linear chain with long-range interactions, using the mean field Langevin dynamics approach and in the presence of fluctuations added by a heat bath. We have computed the specific heat, the magnetic susceptibility, the Binder fourth-order cumulant, and the magnetization, and then we have calculated the critical exponents using finite-size scaling. In addition, we provide a relation between the thermal bath temperature and the temperature of the system. Our results confirm the existence of a second-order critical temperature in the one-dimensional chain of spins with long-range interaction

    Analysis of the Experimental Data for Pure and Diluted [Fe<sub>x</sub>Zn<sub>1-x</sub>(bbtr)<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub> Spin-Crossover Solids in the Framework of a Mechanoelastic Model

    No full text
    The mechanoelastic model is applied to reproduce the experimental relaxation and thermal transition curves as determined for crystals of pure and diluted {[FexZn1–x(bbtr)3](ClO4)2}∞ [bbtr = 1,4-di(1,2,3-triazol-1-yl)butane] spin-crossover systems. In the mechanoelastic model, the spin-crossover complexes are situated in a hexagonal planar lattice, which is similar to the 2D coordination polymer with (3,6) network topology of [Fe(bbtr)3](ClO4)2. These complexes are linked by springs, which simulate the elastic interactions between them. Owing to the change in volume of the complexes during the spin transition, an elastic force accompanies the switch of every complex. This force propagates through the entire lattice and causes a shift of all molecules in the system and thus results in a new nuclear configuration. First, the ability of the model to reproduce various shapes of thermal transition and relaxation curves in pure compounds is analyzed; these range from gradual to very steep and include hysteresis behavior for the former and from single exponential to sigmoidal or with several steps for the latter. A structural phase transition can also be accounted for by changing the shape of the sample at a fixed temperature from a regular to an elongated hexagon. Furthermore, the effect of adding Zn as a dopant in a mixed crystal series is discussed. The role of dopants on the cluster evolution is also analyzed directly and by using the correlation factor
    • 

    corecore