231 research outputs found

    Rhodococcus equi systemic infection in an HIV-infected child

    Get PDF

    Experimental depletion of CD8+ cells in acutely SIVagm-Infected African Green Monkeys results in increased viral replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vivo </it>CD8<sup>+ </sup>cell depletions in pathogenic SIV infections identified a key role for cellular immunity in controlling viral load (VL) and disease progression. However, similar studies gave discordant results in chronically-infected SMs, leading some authors to propose that in natural hosts, SIV replication is independent of cellular immunity. To assess the role of cellular immune responses in the control of SIV replication in natural hosts, we investigated the impact of CD8<sup>+ </sup>cell depletion during acute SIV infection in AGMs.</p> <p>Results</p> <p>Nine AGMs were infected with SIVagm.sab and were followed up to day 225 p.i. Four were intravenously infused with the cM-T807 antibody on days 0 (50 mg/kg), 6, and 13 (10 mg/kg, respectively) post infection (p.i.). CD8<sup>+ </sup>cells were depleted for up to 28 days p.i. in peripheral blood and LNs in all treated AGMs. Partial CD8<sup>+ </sup>T cell depletion occurred in the intestine. SIVagm VLs peaked at similar levels in both groups (10<sup>7</sup>-10<sup>8 </sup>RNA copies/ml). However, while VLs were controlled in undepleted AGMs, reaching set-point levels (10<sup>4</sup>-10<sup>5 </sup>RNA copies/ml) by day 28 p.i., high VLs (>10<sup>6 </sup>RNA copies/ml) were maintained by day 21 p.i. in CD8-depleted AGMs. By day 42 p.i., VLs were comparable between the two groups. The levels of immune activation and proliferation remained elevated up to day 72 p.i. in CD8-depleted AGMs and returned to preinfection levels in controls by day 28 p.i. None of the CD8-depleted animals progressed to AIDS.</p> <p>Conclusion</p> <p>CD8<sup>+ </sup>cells are responsible for a partial control of postacute viral replication in SIVagm.sab-infected AGMs. In contrast to macaques, the SIVagm-infected AGMs are able to control viral replication after recovery of the CD8<sup>+ </sup>T cells and avoid disease progression.</p

    Coadministration of lopinavir/ritonavir and rifampicin in HIV and tuberculosis co-infected adults in South Africa

    Get PDF
    In HIV-infected patients receiving rifampicin-based treatment for tuberculosis (TB), the dosage of lopinavir/ritonavir (LPV/r) is adjusted to prevent sub-therapeutic lopinavir concentrations. In this setting, South African clinicians were advised to administer super-boosted LPV/r (400 mg/400 mg) twice daily, instead of standard dosed LPV/r (400 mg/100 mg) twice daily. We sought to determine--in routine practice--the tolerability and HIV treatment outcomes associated with super-boosted LPV/r compared to unadjusted LPV/r in combination with rifampicin-based TB treatment

    Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

    Get PDF
    Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation.This research was funded through National Institutes of Health /National Institute of Allergy and Infectious Diseases / National Heart, Lung and Blood Institute grants R01 AI104373 (RMR), RO1 HL117715 (IP), R01 AI119346 (CA) and R01 HL123096 (IP). BBP was supported by the NIH Training Grant T32 AI065380. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Dynamics of simian immunodeficiency virus two-long-terminal-repeat circles in the presence and absence of CD8+ Cells

    Get PDF
    Copyright © 2018 American Society for Microbiology. All Rights ReservedCD8+ cells play a key role in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, but their specific mechanism(s) of action in controlling the virus is unclear. Two-long-terminal-repeat (2-LTR) circles are extrachromosomal products generated upon failed integration of HIV/SIV. To understand the specific effects of CD8+ cells on infected cells, we analyzed the dynamics of 2-LTR circles in SIVmac251-infected rhesus macaques (RMs) treated with an integrase inhibitor (INT). Twenty RMs underwent CD8+ cell depletion and received raltegravir (RAL) monotherapy or a combination of both. Blood, lymph nodes (LNs), and gut biopsy specimens were routinely sampled. Plasma viral loads (pVLs) and 2-LTR circles from peripheral blood mononuclear cells (PBMCs) and LN lymphocytes were measured with quantitative reverse transcription-PCR (qRT-PCR). In the CD8 depletion group, an ∼1-log increase in pVLs and a slow increase in PBMC 2-LTRs occurred following depletion. In the INT group, a strong decline in pVLs upon treatment initiation and no change in 2-LTR levels were observed. In the INT and CD8+ cell depletion group, an increase in pVLs following CD8 depletion similar to that in the CD8 depletion group was observed, with a modest decline following INT initiation, and 2-LTR circles significantly increased in PBMCs and LNs. Analyzing the 2-LTR data across all treatment groups with a mathematical model indicates that the data best support an effect of CD8+ cells in killing cells prior to viral integration. Sensitivity analyses of these results confirm that effect but also allow for additional effects, which the data do not discriminate well. Overall, we show that INT does not significantly increase the levels of 2-LTR circles. However, CD8+ cell depletion increases the 2-LTR levels, which are enhanced in the presence of an INT.IMPORTANCE CD8+ T cells play an essential role in controlling HIV and SIV infection, but the specific mechanisms involved remain poorly understood. Due to failed viral infection, HIV and SIV can form 2-LTR extrachromosomal circles that can be quantified. We present novel data on the dynamics of these 2-LTR forms in a SIV-infected macaque model under three different treatment conditions: depletion of CD8+ cells, administration of the integrase inhibitor in a monotherapy, which favors the formation of 2-LTR circles, and a combination of the two treatments. We used a new mathematical model to help interpret the data, and the results suggest that CD8+ cells exert a killing effect on infected cells prior to virus integration. These results provide new insights into the mechanisms of action of CD8+ cells in SIV infection. Confirmation of our results would be an important step in understanding immune control of HIV.This work was supported by the National Institutes of Health/National Center for Research Resources/National Institute of Allergy and Infectious Diseases/National Heart, Lung and Blood Institute grants AI104373 (R.M.R.), R01 HL117715 (I.P.), R01 AI119346 (C.A.), and R01 HL123096 (I.P.). B.B.P. was supported in part by the NIH training grant T32 AI065380.info:eu-repo/semantics/publishedVersio

    Seroprevalence of Zika virus in wild African green monkeys and baboons

    Get PDF
    ABSTRACT Zika virus (ZIKV) has recently spread through the Americas and has been associated with a range of health effects, including birth defects in children born to women infected during pregnancy. Although the natural reservoir of ZIKV remains poorly defined, the virus was first identified in a captive “sentinel” macaque monkey in Africa in 1947. However, the virus has not been reported in humans or nonhuman primates (NHPs) in Africa outside Gabon in over a decade. Here, we examine ZIKV infection in 239 wild baboons and African green monkeys from South Africa, the Gambia, Tanzania, and Zambia using combinations of unbiased deep sequencing, quantitative reverse transcription-PCR (qRT-PCR), and an antibody capture assay that we optimized using serum collected from captive macaque monkeys exposed to ZIKV, dengue virus, and yellow fever virus. While we did not find evidence of active ZIKV infection in wild NHPs in Africa, we found variable ZIKV seropositivity of up to 16% in some of the NHP populations sampled. We anticipate that these results and the methodology described within will help in continued efforts to determine the prevalence, natural reservoir, and transmission dynamics of ZIKV in Africa and elsewhere. IMPORTANCE Zika virus (ZIKV) is a mosquito-borne virus originally discovered in a captive monkey living in the Zika Forest of Uganda, Africa, in 1947. Recently, an outbreak in South America has shown that ZIKV infection can cause myriad health effects, including birth defects in the children of women infected during pregnancy. Here, we sought to investigate ZIKV infection in wild African primates to better understand its emergence and spread, looking for evidence of active or prior infection. Our results suggest that up to 16% of some populations of nonhuman primate were, at some point, exposed to ZIKV. We anticipate that this study will be useful for future studies that examine the spread of infections from wild animals to humans in general and those studying ZIKV in primates in particular. Podcast: A podcast concerning this article is available

    Zoonotic potential of simian arteriviruses

    Get PDF
    Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be “preemergent” zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur

    Where the Wild Things Are: Pathogenesis of SIV Infection in African Nonhuman Primate Hosts

    Get PDF
    African nonhuman primates that are natural hosts of simian immunodeficiency virus (SIV) are generally spared from disease progression. Pathogenic and nonpathogenic SIV infections share some major features: high viral replication, massive acute depletion of mucosal CD4+ T cells, and partial control of the virus by both adaptive and innate immune responses. A key distinction of natural SIV infections is rapid and active control of immune activation and apoptosis of T cells that contributes to the integrity of mucosal barrier and lack of microbial translocation. This allows partial recovery of CD4+ T cells and preservation of the function of other immune cell subsets. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection will likely provide important clues as to the therapy of HIV-1 infection
    corecore