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Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical
challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA vi-
ruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteri-
viridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hem-
orrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not
been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity,
maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arterivi-
ruses may be “preemergent” zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought
to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.

Novel human pathogens are emerging from wildlife at increas-
ing rates (1, 2). Recent efforts to understand this phenome-

non have focused on identifying microorganisms with zoonotic
potential in their “preemergent” state, i.e., within their “natural”
host(s) (1, 3). Even with advances in pathogen discovery technol-
ogy, a complete global assessment of animal pathogens is not cur-
rently feasible (3). However, not all pathogens possess equal zoo-
notic potential. In particular, multihost pathogens and RNA
viruses are significantly more likely to cause zoonoses than patho-
gens of other classes (4). Additionally, nonhuman primate hosts in
Africa are historically important sources of zoonotic pathogens
(5–8).

Recently, we used unbiased deep sequencing to identify and
characterize RNA viruses in the plasma of African nonhuman pri-
mates. Our survey included 10 or more primates from popula-
tions representing eight cercopithecoid (i.e., Old World monkey)
species. These samples were collected from multiple distinct geo-
graphic regions, spanning over 3,000 km. In nearly half of these
populations, we discovered novel highly divergent viruses belong-
ing to the family Arteriviridae (9–12) (Fig. 1). Along with corona-
viruses, roniviruses, and mesoniviruses, arteriviruses belong to
the order Nidovirales and infect a variety of mammals, including
pigs, horses, mice, possums, and Old World monkeys (13). Nota-
bly, the arteriviruses are the only family of RNA viruses that infect
mammals for which human infection has never been documented
(14).

The arteriviruses that we discovered in wild African mon-
keys— here referred to as simian arteriviruses—are monophy-
letic, and all possess genomic features that indicate common an-
cestry with simian hemorrhagic fever virus (SHFV). These viruses
all contain a duplication of 3 to 4 open reading frames (ORFs) in
the 3=-proximal half of the genome that is not observed in other

arteriviruses (13). These additional ORFs putatively express addi-
tional structural proteins that are thought to be required for rep-
lication, but their precise function is not understood.

A history of cross-species transmission.

SHFV was identified in 1964 following an outbreak of simian
hemorrhagic fever (SHF) which affected Asian macaques of sev-
eral species (Macaca fascicularis, Macaca mulatta, and Macaca arc-
toides) in a quarantine facility at the National Institutes of Health
(NIH; Bethesda, MD) (15). Clinically, SHF is characterized by
fever, facial edema, cyanosis, anorexia, adipsia, vomiting, dehy-
dration, and signs of hemorrhagic disease (e.g., melena, petechiae,
subcutaneous hematoma, retrobulbar hemorrhage, and epistaxis)
(16). Internal hemorrhages affecting the lungs, liver, kidneys, and
gastrointestinal tract are found on pathological examination (17).
Laboratory tests from monkeys with SHF reveal hematologic and
urinary changes characteristic of viral hemorrhagic fever (VHF) in
humans, including lymphopenia with a left shift followed by neu-
trophilic leukocytosis, thrombocytopenia, prolonged coagulation
time, and proteinuria indicative of renal failure (18). The case-
fatality rate of SHFV infection in the 1964 NIH outbreak was
initially reported to be 100%; however, this rate may be an over-
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estimate as subclinical infection in a small number of individual
macaques has since been documented (16). Additional outbreaks
of SHF (affecting macaques of the species M. fascicularis, Macaca
nemestrina, M. mulatta, and Macaca radiata) occurred through-
out the 1960s to 1990s (19–23), with transmission among ma-
caques occurring via direct contact and indirect contact and pos-
sibly via aerosol routes (24).

Although the source of virus in these outbreaks was never de-
finitively identified, serological studies of captive African monkeys
implicated primates of several species—namely, patas monkeys
(Erythrocebus patas), grivets (Chlorocebus aethiops), and Guinea
baboons (Papio papio)—as subclinical carriers and likely sources
(24). However, captive patas monkeys inoculated experimentally
with SHFV developed significant signs of disease (25), demon-
strating that simian arterivirus-induced pathology is not specific
to macaques. Moreover, although it was originally presumed that
all SHF outbreaks were caused by a single agent (i.e., SHFV), we
recently showed that at least three highly divergent simian arteri-
viruses were responsible for past outbreaks of SHF, suggesting that
the simian arteriviruses as a group possess features that facilitate
transmission among primates of different species (26).

Characteristics of natural simian arterivirus infection. De-
spite the widely held suspicion that African monkeys were the
natural reservoir for SHFV, it was not until 2011 that the first
SHFV-like viruses were discovered in a wild animal: a red colobus
monkey (Procolobus rufomitratus tephrosceles) in Kibale National
Park, Uganda (the viruses were referred to as KRCV-1 and
KRCV-2, to indicate Kibale red colobus viruses 1 and 2, respec-
tively) (11). We have since discovered simian arteriviruses in red-
tailed guenons (Cercopithecus ascanius schmidti) from Kibale
(Kibale red-tailed guenon viruses 1 and 2 [KRTGV-1 and -2],
respectively) (12), yellow baboons (Papio cynocephalus) from Mi-
kumi National Park in Tanzania (Mikumi yellow baboon virus 1
[MYBV-1]) (10), hybrid kinda � grayfooted-chacma baboons
(Papio kindae � Papio ursinus griseipes) from Kafue National Park
in Zambia (Kafue kinda-chacma baboon virus [KKCBV-1]), and
vervets (Chlorocebus pygerythrus) from the Drakensberg Moun-
tains in South Africa (Drakensberg Mountain vervet virus 1
[DMVV-1]) (Fig. 1A). These viruses were detected at high titers in
the blood of infected individuals (�1 � 107 genome copies/ml
[Fig. 1B]) and were prevalent in affected populations (�40% of
monkeys tested [Fig. 1C]). Sequence analysis revealed that simian
arteriviruses from each species share only �50% nucleotide iden-
tity with one another or SHFV (Fig. 1D). These discoveries also
demonstrate that all major clades of cercopithecoid monkeys, in-
cluding both recognized cercopithecid subfamilies, naturally har-
bor simian arteriviruses.

Although simian arteriviruses have been identified to date in

monkeys from only four locations, the distribution of these sam-
pling sites suggests that simian arterivirus infections occur in
monkeys across sub-Saharan Africa. Alternatively, the lack of de-
tection of simian arterivirus infection in black-and-white colobus
monkeys (Colobus guereza) (n � 10) or olive baboons (Papio
anubis) (n � 23) from Kibale, as well as sooty mangabeys (Cerco-
cebus atys) (n � 12) from the Moa and Mabole rivers in Sierra
Leone, implies that the occurrence of simian arterivirus infection
in African monkey populations may be variable. Regardless, given
the sequence, geographic, and host species diversity of these vi-
ruses in our limited data set—and that the natural host(s) of the
viruses responsible for past outbreaks of SHF in macaques is still
not known—many more simian arteriviruses are likely to be dis-
covered.

Simian arterivirus biology and zoonotic potential. The zoo-
notic potential of a virus cannot be inferred from its biological
properties alone. However, certain biological features are thought
to potentiate zoonotic transmission of RNA viruses. These fea-
tures include, but are not limited to, high genetic diversity, the
ability to overcome host restriction factors, high virus production
within infected animals, infection of primates, high prevalence of
infection within naturally infected animal populations, and in-
tense interactions between infected animals and humans (1, 27,
28). Although not all viruses known to be transmitted from ani-
mals to humans possess all of these features (7), various combina-
tions of these characteristics are observed in RNA viruses that have
emerged (or are emerging) to threaten human health.

Theoretically, high genetic diversity may facilitate cross-spe-
cies transmission of a virus by providing a variety of phenotypi-
cally unique viral variants that may interact with host factors in
different ways (27–29). Classically, phylogenetic analyses have
been used to quantify the diversity of a virus (or group of viruses)
at the family, genus, species, strain, or isolate level. At each of these
levels, the simian arteriviruses display an impressive degree of di-
versity, even in comparison to simian immunodeficiency virus
(SIV), a virus known for its high genetic diversity also found in
African primates (Fig. 1E). Indeed, a motivating force behind
newly proposed taxonomic revisions of the Arteriviridae has been
the recent recognition of diversity within the simian arterivirus
clade (30). Recent advances in sequencing technology have also
allowed for detailed analysis of viral diversity within infected ani-
mals. The effect of this “intrahost” viral diversity on cross-species
transmission is not yet well understood and warrants further in-
vestigation. Intuitively, one might expect that high viral diversity
in the source host would increase the likelihood that one or more
viral variants will be capable of replicating in the recipient host. In
wild monkeys studied to date, simian arteriviruses display high
levels of intrahost diversity (9). While it remains to be seen

FIG 1 Features of simian arterivirus infections among African monkeys. (A) Map of Africa depicting the geographic locations where wild monkeys harboring
simian arteriviruses have been sampled. Colors correspond to the respective host species and virus throughout the figure. (Map from Lokal_Profil [https:
//commons.wikimedia.org/wiki/File:BlankMap-Africa.svg].) (B) Plasma viral loads, as measured by quantitative reverse transcription-PCR, showing simian
arterivirus viremia in infected monkeys. N.T., not tested. (C) Prevalence of simian arterivirus-positive monkeys in affected populations, as determined by
quantitative reverse transcription-PCR, reverse transcription-PCR, and/or unbiased deep sequencing. (D and E) Phylogeny of known simian arteriviruses (D)
with a simian immunodeficiency virus (SIV) phylogeny shown on the same scale for comparison (E). Maximum likelihood trees were generated using MEGA6.06
(1,000 bootstrap replicates, GTR�I�� model) from codon-based alignments (via MAFFT) of 12 simian arterivirus ORF1b sequences or 27 simian immuno-
deficiency virus gag sequences. Bootstrap values of less than 70 are not shown. DeBMV-1, De Brazza’s monkey virus 1; DMVV-1, Drakensberg Mountain vervet
virus 1; KKCBV-1, Kafue kinda-chacma baboon virus 1; KRCV-1/2, Kibale red colobus virus 1/2; KRTGV-1/2, Kibale red-tailed guenon virus 1/2; MYBV-1,
Mikumi yellow baboon virus 1; PBJV, Pebjah virus; SHEV, simian hemorrhagic encephalitis virus; SHFV, simian hemorrhagic fever virus; SWBV-1, Southwest
baboon virus 1.
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whether this diversity includes variants capable of establishing a
successful infection in humans, it may increase the likelihood that
such a simian arterivirus variant exists.

High virus production in naturally infected animal hosts may
also facilitate cross-species transmission by increasing the dose of
virus transferred to the recipient host. As the dose of virus re-
quired to initiate infection is influenced by the route of transmis-
sion and several variables intrinsic to the virus and host in ques-
tion, direct comparisons between unrelated viruses are difficult.
However, several zoonotic RNA viruses are known to have high
viral loads in their natural hosts, e.g., lentiviruses in primates (31),
hantaviruses in rodents (32), and coronaviruses in camelids (33).
Although the route(s) by which simian arterivirus infections
might be acquired by humans remains unknown, the high titers of
virus detected in the blood of infected monkeys (Fig. 1B) suggest
that even a small exposure to blood from an infected animal could
expose a human to a relatively large quantity of virus. The extent
and type of contact between humans and wild nonhuman pri-
mates in Africa vary by geographic region, local customs, and the
specific primate species in question. However, many groups of
humans come into contact with monkeys through hunting,
butchering, and consuming bush meat, including primates from
populations known to harbor simian arteriviruses (34–36).

The host factors that influence zoonosis are myriad and highly
virus specific. Although host phylogenetic relatedness may serve
as a rough proxy for susceptibility to cross-species viral infection,
some RNA viruses (e.g., filoviruses, rhabdoviruses, and influenza
A viruses) have a very broad species tropism while others (e.g.,
lentiviruses, hepaciviruses, and pegiviruses) appear to be highly
host species restricted (37–40). African monkeys are more closely
related to macaques than they are to humans (41), but the full
extent of simian arterivirus species tropism remains an important
open question. Identifying the specific cellular factors utilized by
simian arteriviruses should allow for more sophisticated analyses
of simian arterivirus infection in its hosts (42). Determining the
host factors that influence simian arterivirus pathogenesis and
disease severity in various hosts is another potentially valuable, yet
unexplored, avenue of research.

Simian arteriviruses appear to cause persistent viremia in Af-
rican monkeys, suggesting that these viruses may have evolved
mechanisms to evade the immune system (9, 10), as has been
shown for other, nonsimian arteriviruses (13). While persistence
directly influences the prevalence of infection in a given popula-
tion, preexisting immune evasion mechanisms might also play an
important role in establishing infection in a novel host. We spec-
ulate that simian arterivirus persistence in natural hosts may be
mediated, in part, by genetic plasticity and mutational escape of
host immune responses, as has been shown for other persistent
viruses such as HIV and hepatitis C virus (9, 43, 44). The ability of
simian arteriviruses to cause persistent high-titer viremia and
genomic diversity in their natural hosts does not guarantee that
these properties would be maintained in zoonotic human infec-
tions. However, high-titer replication and genetic plasticity could
also facilitate rapid adaptation to a human host, lowering barriers
to replication in humans and human-to-human transmission.

A final consideration is the possible effect of simian arterivirus
infection on the pathogenesis of other coinfections. For example,
Reston virus, a relative of Ebola virus, was discovered during a
particularly severe outbreak of SHF (45). Given the high preva-
lence of infectious diseases in human populations most likely to be

exposed to simian arteriviruses, there exists the possibility for syn-
ergy among coinfecting pathogens and simian arteriviruses.

Are simian arteriviruses a zoonotic threat? Our ability to
identify viruses in nature and predict their emergence in humans
is still in its infancy. Yet, given the features of simian arterivirus
biology explored to date, investigation into the zoonotic potential
of these viruses seems prudent. Importantly, lack of documented
human infection should not be taken as evidence for lack of zoo-
notic potential. For example, if a human were infected with a
simian arterivirus, would that infection cause clinical disease, and
if so, would that disease be distinguishable from other, more com-
mon infections? Searching for evidence of simian arterivirus in-
fection in people (e.g., animal caretakers and bush meat hunters)
or wild great apes (e.g., chimpanzees and gorillas) that interact
frequently with infected monkeys could help answer these ques-
tions. However, the genetic diversity of known simian arterivi-
ruses (and presumably of those not yet discovered) poses a formi-
dable technical barrier to such an analysis. For this reason,
screening of additional primate populations will be essential to
resolve the genetic diversity, host range, geographic distribution,
and natural history of simian arteriviruses. Technologies such as
unbiased deep sequencing will undoubtedly play a major role in
this effort. As we gain a greater appreciation for the extent of
simian arterivirus diversity, more widely accessible techniques
(e.g., PCR and serology) may become useful in screening for sim-
ian arterivirus infections in humans.

The recent discovery of multiple highly diverse and prevalent
simian arteriviruses in primates of several species across sub-Sa-
haran Africa highlights how little we know about these viruses.
Research on these viruses to date has identified the characteristics
described here, but further characterization of the molecular bi-
ology, evolution, and ecology of these viruses is needed to more
fully appreciate the implications of these viruses for human
health. The relative rarity with which novel human pathogens
emerge and the effectiveness of antiviral host restriction factors
might suggest that the simian arteriviruses are unlikely to do so.
However, understanding why certain viruses do not emerge in
humans despite predisposing biological characteristics may also
hold value for refining our understanding of the factors that drive
zoonotic transmission of RNA viruses.

ETHICS STATEMENT

All research involving nonhuman primates was conducted ac-
cording to the relevant national and international guidelines.
Briefly, all animals were sedated prior to blood collection and were
released back to their social group without incident following
sample collection and recovery from anesthesia. All animal re-
search was approved by the appropriate wildlife authorities and
institutional animal care and use committees. Collection of sam-
ples from nonhuman primates in Uganda was approved by the
Uganda Wildlife Authority (permit UWA/TDO/33/02), the
Uganda National Council for Science and Technology (permit HS
364), and the University of Wisconsin Animal Care and Use Com-
mittee (protocol V01409-0-02-09) prior to initiation of the study,
as described previously (11). Sampling of vervet monkeys in South
Africa was approved by the Interfaculty Animal Ethics Committee
(project no. 13/2010) at the University of the Free State and by the
University of Wisconsin—Milwaukee Animal Care and Use Com-
mittee (protocol 07-08 #32) as described previously (31). Sam-
pling of yellow baboons in Tanzania was performed in 1985 and
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1986 using standard methods for field studies of baboons as de-
scribed previously and was approved by the appropriate Tanza-
nian government authorities, Washington University, and Yale
University. Sampling of hybrid kinda � grayfooted-chacma ba-
boons in Zambia was performed in compliance with the rules of
the Zambian Wildlife Authority and was conducted in compliance
with the rules of the animal care and use committees from Baylor
College of Medicine (AN-5538), Washington University School of
Medicine (protocol 20120269), and New York University (proto-
col 10-1349) and applicable national laws.
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