218 research outputs found

    A Note On T, Topologies

    Get PDF
    Let t be a T. topology for a set X. The problem of representing t as the lattice product (intersection) of stronger topologies is considered. © 1974 American Mathematical Society

    Low-threshold analysis of CDMS shallow-site data

    Get PDF
    Data taken during the final shallow-site run of the first tower of the Cryogenic Dark Matter Search (CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions. Four ~224 g germanium and two ~105 g silicon detectors were operated at the Stanford Underground Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three of the germanium and both silicon detectors were analyzed with a new low-threshold technique, making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger thresholds of ~1 keV and ~2 keV, respectively. Limits on the spin-independent cross section for weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data exclude interesting parameter space for WIMPs with masses below 9 GeV/c^2. Under standard halo assumptions, these data partially exclude parameter space favored by interpretations of the DAMA/LIBRA and CoGeNT experiments' data as WIMP signals, and exclude new parameter space for WIMP masses between 3 GeV/c^2 and 4 GeV/c^2.Comment: 18 pages, 12 figures, 5 table

    Exclusion Limits on the WIMP-Nucleon Cross-Section from the First Run of the Cryogenic Dark Matter Search in the Soudan Underground Lab

    Full text link
    The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with >96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ~10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface-electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross-section has a minimum of 4x10^-43 cm^2 at a WIMP mass of 60 GeV/c^2. The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross-section is 2x10^-37 cm^2 at a WIMP mass of 50 GeV/c^2.Comment: 37 pages, 42 figure

    New Results from the Cryogenic Dark Matter Search Experiment

    Full text link
    Using improved Ge and Si detectors, better neutron shielding, and increased counting time, the Cryogenic Dark Matter Search (CDMS) experiment has obtained stricter limits on the cross section of weakly interacting massive particles (WIMPs) elastically scattering from nuclei. Increased discrimination against electromagnetic backgrounds and reduction of neutron flux confirm WIMP-candidate events previously detected by CDMS were consistent with neutrons and give limits on spin-independent WIMP interactions which are >2X lower than previous CDMS results for high WIMP mass, and which exclude new parameter space for WIMPs with mass between 8-20 GeV/c^2.Comment: 4 pages, 4 figure

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200

    A Measurement of the Branching Ratio of KL→e+e−γγK_L \to e^+e^-\gamma\gamma

    Full text link
    We report on a study of the decay KL→e+e−γγK_L \to e^+e^-\gamma\gamma carried out as a part of the KTeV/E799 experiment at Fermilab. The 1997 data yielded a sample of 1543 events, including an expected background of 56±856 \pm 8 events. An effective form factor was determined from the observed distribution of the e+e−e^+e^- invariant mass. Using this form factor in the calculation of the detector acceptance, the branching ratio was measured to be B(KL→e+e−γγ,Eγ∗>5MeV)=(5.84±0.15 (stat)±0.32 (sys))×10−7{\mathcal B}(K_L \to e^+ e^- \gamma \gamma, E^*_\gamma > 5 {MeV}) = (5.84 \pm 0.15 {\rm ~(stat)} \pm 0.32 {\rm ~(sys)})\times 10^{-7}.Comment: 5 pages, 4 figure

    Observation of CP Violation in K(L)->pi+pi-e+e- Decays

    Full text link
    We report the first observation of a manifestly CP violating effect in the K(L)->pi+pi-e+e- decay mode. A large asymmetry was observed in the distribution of these decays in the CP-odd and T-odd angle phi between the decay planes of the e+e- and pi+pi- pairs in the K(L) center of mass system. After acceptance corrections, the overall asymmetry is found to be 13.6+-2.5 (stat) +-1.2 (syst)%. This is the largest CP-violating effect yet observed integrating over the entire phase space of a mode and the first such effect observed in an angular variable.Comment: 4 pages 4 figures submitted to pr

    First Observation of the decay KL -> pi0 e e gamma

    Full text link
    We report on the first observation of the decay KL -> pi0 ee gamma by the KTeV E799 experiment at Fermilab. Based upon a sample of 48 events with an estimated background of 3.6 +/- 1.1 events, we measure the KL -> pi0 ee gamma branching ratio to be (2.34 +/- 0.35 +/- 0.13)x10^{-8}. Our data agree with recent O(p^6) calculations in chiral perturbation theory that include contributions from vector meson exchange through the parameter a_V. A fit was made to the KL -> pi0 ee gamma data for a_V with the result -0.67 +/- 0.21 +/- 0.12, which is consistent with previous results from KTeV.Comment: Submitted to Physical Review Letters, 5 pages, 5 figure
    • …
    corecore