

Missouri University of Science and Technology Scholars' Mine

Mathematics and Statistics Faculty Research & Creative Works

Mathematics and Statistics

01 Jan 1974

A Note On T, Topologies

Wilson R. Crisler

Troy L. Hicks Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork

Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation

W. R. Crisler and T. L. Hicks, "A Note On T, Topologies," *Proceedings of the American Mathematical Society*, vol. 46, no. 1, pp. 94 - 96, American Mathematical Society, Jan 1974. The definitive version is available at https://doi.org/10.1090/S0002-9939-1974-0370494-3

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A NOTE ON T_1 TOPOLOGIES

WILSON R. CRISLER AND TROY L. HICKS

ABSTRACT. Let t be a T_1 topology for a set X. The problem of representing t as the lattice product (intersection) of stronger topologies is considered.

It is well known that the set of all topologies on an infinite set X is a complete lattice with partial order \geq defined as stronger than. Also, the family of T_1 topologies on X is a complete sublattice of X. In [1], R. Lalitha proved that: (1) If t is a T_1 topology for X, then t is the lattice product (intersection) of all stronger T_2 topologies on X. (2) If t satisfies the first axiom of countability, it is the intersection of all stronger metric topologies on X. In this note, we give a stronger theorem with a much shorter proof. Also, several new results follow from the stronger theorem. Nagata's book [2] is a general reference for notation and terminology.

Theorem 1. If X is an infinite set and t is a T_1 topology for X, then for every subset E of X such that $E \notin t$ there exists a fully normal, completely normal, disconnected topology t_E on X with $t \leq t_E$ and $E \notin t_E$. Also, if t is first countable, t_F is metrizable.

Proof. Given $E \notin t$, choose $p \in E \cap cl(X - E)$. Let $\mathfrak{N}(p)$ be an open base at p. For each $N \in \mathfrak{N}(p)$, set

$$V_N = \Delta \cup [\{p\} \cup (N \cap X - E)] \times [\{p\} \cup (N \cap X - E)]$$

where $\Delta = \{(x, x): x \in X\}$. Note that $N \cap (X - E) \neq \emptyset$ and

$$V_N[p] = \{p\} \cup (N \cap X - E) \subset N.$$

It is easy to see that $\Delta \subset V_N, V_N = V_N^{-1}, V_N \cap V_M = V_{N \cap M}$, and $V_N \circ V_N = V_N$. Hence $\mathcal{B} = \{V_N : N \in \mathcal{N}(p)\}$ is a base for a uniform structure \mathcal{U} . t_E is the induced uniform topology.

(1) If $A \subset X$ and $p \notin A$, then $A \in t_E$. If $x \in A$, $x \neq p$ and t is T_1 implies there exists $N \in \mathcal{N}(p)$ such that $x \notin N$. Then $\{x\} = V_N[x] \in t_E$.

Copyright © 1974, American Mathematical Society

Presented to the Society, January 28, 1973; received by the editors August 8, 1973 and, in revised form, October 1, 1973.

AMS (MOS) subject classifications (1970). Primary 54D10, 54D15.

(3) $E \notin t_E$. This follows since $p \in E$ and $V_N[p] = \{p\} \cup (N \cap X - E) \notin E$ for $N \in \mathcal{N}(p)$.

(4) $t \le t_E$. Suppose $x \in A \in t$. If $x \ne p$, then, by (1), $\{x\} \in t_E$. If x = p, there exists $N \in \mathcal{H}(p)$ such that $N \subset A$. Now $V_N[p] \subset N \subset A$. Thus $A \in t_E$.

(5) t_E is completely normal. Suppose $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. If $p \notin A \cup B$, then, by (1), $A \in t_E$ and $B \in t_E$. Clearly, $A \cap B = \emptyset$. If $p \in A \cup B$, suppose $p \in A$. Then $p \notin B$ implies $B \in t_E$. $X - \overline{B} \in t_E$, $A \subset X - \overline{B}$, and $B \cap X - \overline{B} = \emptyset$.

(6) t_E is fully normal. Let $\mathfrak{U} = \{O_a : a \in I\}$ be an open cover of X. $p \in O_{a'}$ for some $a' \in I$. $X = O_{a'} \cup (\bigcup_{x \neq p} \{x\})$. Denote this open cover by \mathfrak{B} . $\mathfrak{B}^{\Delta} < \mathfrak{U}$. For, if $x \in X$ and $x \neq p$, then $S(x, \mathfrak{B}) = O_{a'}$ if $x \in O_{a'}$ and $S(x, \mathfrak{B}) = \{x\}$ if $x \notin O_{a'}$. Also, $S(p, \mathfrak{B}) = O_{a'}$.

(7) t_E is disconnected. Since t is T_1 , there exists $N \in \mathcal{N}(p)$ with $N \neq X$. $V_N[p] \subset N$ implies there exists $O \in t_E$ with $p \in O \neq X$. $p \in O$ implies $\overline{O} = O$.

(8) t is first countable implies t_E is metrizable. In this case, we choose $\mathfrak{N}(p)$ so it is countable and clearly the uniform structure \mathfrak{U} has a countable base. Thus t_E is metrizable.

Corollary 1. If t is a T_1 topology on an infinite set, then $t = \bigcap \{u: u \text{ is } T_2 \text{ and } t \le u\} = \bigcap \{u: u \text{ is regular and } t \le u\} = \bigcap \{u: u \text{ is normal and } t \le u\} = \bigcap \{u: u \text{ is fully normal, completely normal, disconnected, and } t \le u\}.$

Corollary 2. If t is the weakest T_1 topology on an infinite set, then $t = \bigcap \{u: u \text{ is } T_1\} = \bigcap \{u: u \text{ is } T_2\} = \bigcap \{u: u \text{ is regular}\} = \bigcap \{u: u \text{ is fully normal, completely normal, and disconnected}\}.$

The reader can observe other consequences of the theorem. For example, if t is a T_2 topology on an infinite set, then $t = \bigcap \{u: u \text{ is regular} and t \leq u\}$. Actually, the topology t_E in the theorem has other properties. We give one in the following

Lemma. The uniform structure \mathcal{U} that gives t_F is complete.

Proof. Suppose \mathcal{F} is a U-Cauchy filter and let $N \in \mathcal{N}(p)$. Then there exists $F \in \mathcal{F}$ such that $F \times F \subset V_N$. $F \neq \emptyset$. If $F = \{x_0\}, \mathcal{F}$ converges to x_0 . If $F \neq \{x_0\}, F \supset \{a, b\}$ where $a \neq b$, and we show that $F \subset N$. Then

 $N \in F$ and \mathcal{F} converges to p. If $c \in F$ and $c \neq p$, choose $d \in F$ such that $c \neq d$. Then $(c, d) \in F \times F \subset V_N$ implies $c \in N \cap X - E \subset N$.

The construction, given in the proof of Theorem 1, involves only elementary concepts. Also, it is useful in constructing examples. We illustrate this fact.

Example. X is the unit interval [0, 1], t is the topology of finite complements, and $E = \{O\} \notin t$. $p = O \in E \cap cl(X - E)$. If $O \in N \in t$ $V_{N}[O] = \{O\} \cup (N \cap X - \{O\}) = N$.

Thus the t_E open sets containing 0 are the t open sets containing 0 and

 $t_E = \{ \emptyset, X \} \cup \{A: 0 \notin A \} \cup \{B: 0 \in B \text{ and } X - B \text{ is finite} \}.$

(1) From the proof of Theorem 1, t_E is uniformizable, completely normal, fully normal, and disconnected. It is clearly compact.

(2) We show that t_E is not pseudo-metrizable and also not perfectly normal. If it were pseudo-metrizable it would be metrizable since t_E is T_2 . Also, we could write $\{0\} = \bigcap_{n=1}^{\infty} A_n$ where $0 \in A_n \in t_E$. Then $X - \{0\} = \bigcup_{n=1}^{\infty} (X - A_n)$ would be countable which is impossible. Since $X - \{0\} \in t_E$, $\{0\}$ is closed and the above argument shows that t_E is not perfectly normal.

REFERENCES

1. R. Lalitha, A note on the lattice structure of T_1 topologies on an infinite set, Math. Student 35 (1967), 29-33. MR 40 #6484.

2. Jun-iti Nagata, Modern general topology, Bibliotheca Mathematica, vol. 7, North-Holland, Amsterdam; Wolters-Noordhoff, Groningen; Interscience, New York, 1968. MR 41 #9171.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, ROLLA, MISSOURI 65401