24 research outputs found

    Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?

    Get PDF
    Nitrous acid, HONO, is a key net photolytic precursor to OH radicals in the atmospheric boundary layer. As OH is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of HONO sources is important to predict atmospheric oxidising capacity. While a number of HONO formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface-mediated conversion of NO₂ to HONO in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of HONO and related species obtained at two contrasting coastal locations – Cabo Verde (Atlantic Ocean, denoted Cape Verde herein), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted northern European coastal waters. As expected, higher average concentrations of HONO (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (HONO < 5 ppt). At both sites, the approximately constant HONO/NO₂ ratio at night pointed to a low importance for the dark, ocean-surface-mediated conversion of NO₂ into HONO, whereas the midday maximum in the HONO/NO₂ ratios indicated significant contributions from photo-enhanced HONO formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark, ocean-surface HONO-to-NO₂ conversion of CHONO = 0.0011 ppb h⁻¹ from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant HONO formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of HONO is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate

    Evaluation of EDAR vehicle emissions remote sensing technology

    Get PDF
    Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC’s Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH4 and C3H8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R2 0.996 for CO, 0.998 for NO; 0.983 for CH4; and 0.976 for C3H8) and detection limits were 50 to 100 ppm for CO, 10 to 30 ppm for NO, 15 to 35 ppmC for CH4, and, depending on vehicle speed, 100 to 400 ppmC3 for C3H8. The second study, by the Universities of Birmingham and Leeds and King’s College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R2 0.92 for CO/CO2; 0.97 for NO/CO2; ca. 0.82 for NO2/CO2; and, 0.94 for PM/CO2) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions

    Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing

    Get PDF
    Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity – so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2− production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(IV) oxidation kinetics, for which an upper limit is derived

    Extensive field evidence for the release of HONO from the photolysis of nitrate aerosols

    Get PDF
    Particulate nitrate (pNO−3 ) has long been considered a permanent sink for NOx (NO and NO2), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of pNO−3 can recycle HONO and NOx back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in “renoxification” photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of pNO−3 , thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O3 in both polluted and clean environments

    Elevated levels of OH observed in haze events during wintertime in central Beijing

    Get PDF
    Wintertime in situ measurements of OH, HO2 and RO2 radicals and OH reactivity were made in central Beijing during November and December 2016. Exceptionally elevated NO was observed on occasions, up to ∼250 ppbv. The daily maximum mixing ratios for radical species varied significantly day-to-day over the ranges 1–8×106 cm−3 (OH), 0.2–1.5×108 cm−3 (HO2) and 0.3–2.5×108 cm−3 (RO2). Averaged over the full observation period, the mean daytime peak in radicals was 2.7×106, 0.39×108 and 0.88×108 cm−3 for OH, HO2 and total RO2, respectively. The main daytime source of new radicals via initiation processes (primary production) was the photolysis of HONO (∼83 %), and the dominant termination pathways were the reactions of OH with NO and NO2, particularly under polluted haze conditions. The Master Chemical Mechanism (MCM) v3.3.1 operating within a box model was used to simulate the concentrations of OH, HO2 and RO2. The model underpredicted OH, HO2 and RO2, especially when NO mixing ratios were high (above 6 ppbv). The observation-to-model ratio of OH, HO2 and RO2 increased from ∼1 (for all radicals) at 3 ppbv of NO to a factor of ∼3, ∼20 and ∼91 for OH, HO2 and RO2, respectively, at ∼200 ppbv of NO. The significant underprediction of radical concentrations by the MCM suggests a deficiency in the representation of gas-phase chemistry at high NOx. The OH concentrations were surprisingly similar (within 20 % during the day) in and outside of haze events, despite j(O1D) decreasing by 50 % during haze periods. These observations provide strong evidence that gas-phase oxidation by OH can continue to generate secondary pollutants even under high-pollution episodes, despite the reduction in photolysis rates within haze

    Extreme Concentrations of Nitric Oxide Control Daytime Oxidation and Quench Nocturnal Oxidation Chemistry in Delhi during Highly Polluted Episodes

    Get PDF
    Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period

    Impact of HO₂ aerosol uptake on radical levels and O₃ production during summertime in Beijing

    Get PDF
    The impact of heterogeneous uptake of HO2 on aerosol surfaces on radical concentrations and the O3 production regime in Beijing in summertime was investigated. The uptake coefficient of HO2 onto aerosol surfaces, , was calculated for the AIRPRO campaign in Beijing, in summer 2017, as a function of measured aerosol soluble copper concentration, [Cu2+]eff, aerosol liquid water content, [ALWC], and particulate matter concentration, [PM]. An average across the entire campaign of 0.070±0.035 was calculated, with values ranging from 0.002 to 0.15, and found to be significantly lower than the value of , commonly used in modelling studies. Using the calculated values for the summer AIRPRO campaign, OH, HO2 and RO2 radical concentrations were modelled using a box model incorporating the Master Chemical Mechanism (v3.3.1), with and without the addition of , and compared to the measured radical concentrations. The rate of destruction analysis showed the dominant HO2 loss pathway to be HO2 + NO for all NO concentrations across the summer Beijing campaign, with HO2 uptake contributing <0.3 % to the total loss of HO2 on average. This result for Beijing summertime would suggest that under most conditions encountered, HO2 uptake onto aerosol surfaces is not important to consider when investigating increasing O3 production with decreasing [PM] across the North China Plain. At low [NO], however, i.e. <0.1 ppb, which was often encountered in the afternoons, up to 29 % of modelled HO2 loss was due to HO2 uptake on aerosols when calculated was included, even with the much lower values compared to 0.2, a result which agrees with the aerosol-inhibited O3 regime recently proposed by Ivatt et al. (2022). As such it can be concluded that in cleaner environments, away from polluted urban centres where HO2 loss chemistry is not dominated by NO but where aerosol surface area is high still, changes in PM concentration and hence aerosol surface area could still have a significant effect on both overall HO2 concentration and the O3 production regime. Using modelled radical concentrations, the absolute O3 sensitivity to NOx and volatile organic compounds (VOCs) showed that, on average across the summer AIRPRO campaign, the O3 production regime remained VOC-limited, with the exception of a few days in the afternoon when the NO mixing ratio dropped low enough for the O3 regime to shift towards being NOx-limited. The O3 sensitivity to VOCs, the dominant regime during the summer AIRPRO campaign, was observed to decrease and shift towards a NOx-sensitive regime both when NO mixing ratio decreased and with the addition of aerosol uptake. This suggests that if [NOx] continues to decrease in the future, ozone reduction policies focussing solely on NOx reductions may not be as efficient as expected if [PM] and, hence, HO2 uptake to aerosol surfaces continue to decrease. The addition of aerosol uptake into the model, for both the calculated from measured data and when using a fixed value of , did not have a significant effect on the overall O3 production regime across the campaign. While not important for this campaign, aerosol uptake could be important for areas of lower NO concentration that are already in a NOx-sensitive regime

    Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement

    Get PDF
    A total of 85 PM2.5 samples were collected at a site located in a large industrial zone (Porto Marghera, Venice, Italy) during a 1-year-long sampling campaign. Samples were analyzed to determine water-soluble inorganic ions, elemental and organic carbon, and levoglucosan, and results were processed to investigate the seasonal patterns, the relationship between the analyzed species, and the most probable sources by using a set of tools, including (i) conditional probability function (CPF), (ii) conditional bivariate probability function (CBPF), (iii) concentration weighted trajectory (CWT), and (iv) potential source contribution function (PSCF) analyses. Furthermore, the importance of biomass combustions to PM2.5 was also estimated. Average PM2.5 concentrations ranged between 54 and 16 μg m−3 in the cold and warm period, respectively. The mean value of total ions was 11 μg m−3 (range 1–46 μg m−3): The most abundant ion was nitrate with a share of 44 % followed by sulfate (29 %), ammonium (14 %), potassium (4 %), and chloride (4 %). Levoglucosan accounted for 1.2 % of the PM2.5 mass, and its concentration ranged from few ng m−3 in warm periods to 2.66 μg m−3 during winter. Average concentrations of levoglucosan during the cold period were higher than those found in other European urban sites. This result may indicate a great influence of biomass combustions on particulate matter pollution. Elemental and organic carbon (EC, OC) showed similar behavior, with the highest contributions during cold periods and lower during summer. The ratios between biomass burning indicators (K+, Cl−, NO3−, SO42−, levoglucosan, EC, and OC) were used as proxy for the biomass burning estimation, and the contribution to the OC and PM2.5 was also calculated by using the levoglucosan (LG)/OC and LG/PM2.5 ratios and was estimated to be 29 and 18 %, respectively

    Elemental composition of ambient fine particles in urban schools : sources of children’s exposure

    No full text
    Currently, there is a limited understanding of the sources of ambient fine particles that contribute to the exposure of children at urban schools. Since the size and chemical composition of airborne particle are key parameters for determining the source as well as toxicity, PM1 particles (mass concentration of particles with an aerodynamic diameter less than 1 μm) were collected at 24 urban schools in Brisbane, Australia and their elemental compositions determined. Based on the elemental compositions four main sources were identified; secondary sulphates, biomass burning, vehicle and industrial emissions. While secondary sulphates were likely to be a large contributing source by mass, industrial emissions accounted for the most variation in trace metals in the PM1 that children were exposed to at the schools. PM1 concentrations at the schools were compared to the elemental composition of the PM2.5 particles (mass concentration of particles with an aerodynamic diameter less than 2.5 μm) from a previous study conducted at a suburban and roadside site in Brisbane. This comparison suggested that the more toxic heavy metals (V, Cr, Ni, Cu, Zn and Pb), mostly from vehicle and industrial emissions, were predominantly in the PM1 fraction. Thus, the results from this study points to PM1 as a potentially good particle size fraction for investigating the health effects of airborne particles. Further work is required to confirm this hypothesis. © 2014 Taiwan Association for Aerosol Researc

    Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?

    No full text
    Nitrous acid, HONO, is a key net photolytic precursor to OH radicals in the atmospheric boundary layer. As OH is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of HONO sources is important to predict atmospheric oxidising capacity. While a number of HONO formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface-mediated conversion of NO2 to HONO in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of HONO and related species obtained at two contrasting coastal locations – Cabo Verde (Atlantic Ocean, denoted Cape Verde herein), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted northern European coastal waters. As expected, higher average concentrations of HONO (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (HONO < 5 ppt). At both sites, the approximately constant HONO/NO₂ ratio at night pointed to a low importance for the dark, ocean-surface-mediated conversion of NO₂ into HONO, whereas the midday maximum in the HONO/NO₂ ratios indicated significant contributions from photo-enhanced HONO formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark, ocean-surface HONO-to-NO₂ conversion of CHONO = 0.0011 ppb h⁻¹ from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant HONO formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of HONO is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate
    corecore