372 research outputs found

    Enhanced low-energy γ\gamma-decay strength of 70^{70}Ni and its robustness within the shell model

    Full text link
    Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their γ\gamma-emission probability at very low γ\gamma energies. In this work, we present measurements of the γ\gamma-decay strength of 70^{70}Ni over the wide range 1.3Eγ81.3 \leq E_{\gamma} \leq 8 MeV. A significant enhancement is found in the γ\gamma-decay strength for transitions with Eγ<3E_\gamma < 3 MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed E1E1-strength calculations within the quasiparticle time-blocking approximation, which describe our data above Eγ5E_\gamma \simeq 5 MeV very well. Moreover, large-scale shell-model calculations indicate an M1M1 nature of the low-energy γ\gamma strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich 72,74,76Ni^{72,74,76}\mathrm{Ni}.Comment: 9 pages, 9 figure

    Level Lifetimes and the Structure of \u3csup\u3e134\u3c/sup\u3eXe from Inelastic Neutron Scattering

    Get PDF
    The level structure of 134Xe was studied with the inelastic neutron scattering reaction followed by γ-ray detection. A number of level lifetimes were determined for the first time with the Doppler-shift attenuation method and the low-lying excited states were characterized. From this new spectroscopic information, the third excited state, a 0+ level which had only been observed in a previous inelastic neutron scattering study, was verified. Reduced transition probabilities were calculated; comparisons were drawn with a vibrational description of the nucleus and found lacking. The 3− octupole phonon has been confirmed, and the complete negative-parity multiplet resulting from the ν(1h11/22d3/2) configuration has also been tentatively identified for the first time in the N = 80 isotones

    Measurement of Conversion Coefficients in Normal and Triaxial Strongly Deformed Bands in \u3csup\u3e167\u3c/sup\u3eLu

    Get PDF
    Internal conversion coefficients have been measured for transitions in both normal deformed and triaxial strongly deformed bands in 167Lu using the Gammasphere and ICE Ball spectrometers. The results for all in-band transitions are consistent with E2 multipolarity. Upper limits are determined for the internal conversion coefficients for linking transitions between TSD Band 2 and TSD Band 1, the nw = 1 and nw = 0 wobbling bands, respectively

    Inelastic Neutron Scattering Studies of \u3csup\u3e132,134\u3c/sup\u3eXe: Elucidating Structure in a Transitional Region and Possible Interferences for 0vββ Searches

    Get PDF
    Highly enriched (\u3e 99.9%) 132Xe and 134Xe gases were converted to solid 132XeF2 and 134XeF2 and were used as scattering samples for inelastic neutron scattering measurements at the University of Kentucky Accelerator Laboratory (UKAL). Lifetimes of levels up to 3.5MeV in excitation energy in these xenon isotopes were measured using the Doppler-shift attenuation method, allowing the determination of reduced transition probabilities. Gamma rays corresponding to new transitions and levels have been observed. In particular, tentative new excited 0+ states and associated decays have been examined in an effort to elucidate the structure of these nuclei in a transitional region, and comparisons have been drawn with models which seek to describe such nuclei, e.g., the E(5) critical-point symmetry of the IBM. Newly identified potential interferences for neutrinoless double-beta decay searches involving 136Xe are also discussed

    Spectral components in the bright, long GRB 061007: properties of the photosphere and the nature of the outflow

    Full text link
    We present a time-resolved spectral analysis of the bright, long GRB 061007 (z=1.261) using Swift BAT and Suzaku WAM data. We find that the prompt emission of GRB 061007 can be equally well explained by a photospheric component together with a power law as by a Band function, and we explore the implications of the former model. The photospheric component, which we model with a multicolour blackbody, dominates the emission and has a very stable shape throughout the burst. This component provides a natural explanation for the hardness-intensity correlation seen within the burst and also allows us to estimate the bulk Lorentz factor and the radius of the photosphere. The power-law component dominates the fit at high energies and has a nearly constant slope of -1.5. We discuss the possibility that this component is of the same origin as the high-energy power laws recently observed in some Fermi LAT bursts.Comment: Accepted for publication in MNRA

    Studies of \u3csup\u3e54,56\u3c/sup\u3eFe Neutron Scattering Cross Sections

    Get PDF
    Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL) using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented

    0\u3csup\u3e+\u3c/sup\u3e States in \u3csup\u3e130,132\u3c/sup\u3eXe: A Search for E(5) Behavior

    Get PDF
    The level structures of 130,132Xe were studied with the inelastic neutron scattering reaction followed by γ-ray detection. Level lifetimes were measured using the Doppler-shift attenuation method and low-lying excited states in these nuclei were characterized. With a focus on the decay properties of the 0+ states, these nuclei were examined as representations of the E(5) critical-point symmetry

    β -decay half-lives of neutron-rich nuclides in the A=100-110 mass region

    Get PDF
    β-decay half-lives of neutron-rich nuclides in the A=100-110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement

    Collectivity of 0\u3csup\u3e+\u3c/sup\u3e States in \u3csup\u3e160\u3c/sup\u3eGd

    Get PDF
    Excited 0+ states in 160Gd have been examined with the (n,n′γ) reaction at incident neutron energies up to 2.8 MeV. Gamma-ray excitation functions and angular distribution measurements allow the confirmation of the existence of 0+ states at 1379.70 keV and 1558.30 keV, but we reject the assignments of additional previously suggested 0+ candidates. Limits on the level lifetimes of the observed 0+ states permit an evaluation of the collectivity of these states
    corecore