18 research outputs found
Theoretical and experimental study of a biomass micro-CHP unit with an Ericsson engine
La micro-cogénération, production simultanée d’électricité et de chaleur à échelle domestique, se développe actuellement en Europe du fait notamment de son intérêt en termes d’économie d’énergie primaire. L’utilisation d’un combustible biomasse dans un système de micro-cogénération contribue à augmenter la part d’énergie renouvelable dans le mix énergétique. L’objet de ce travail est le développement d’un banc d’essai d’une unité de micro-cogénération biomasse composée d’une chaudière à pellets, d’un moteur à air chaud de type Ericsson (décomposé en une partie compression et une partie détente) et d’un échangeur gaz brûlés-air pressurisé inséré dans la chaudière. Des modèles de chacun de ces composants ont été établis pour caractériser leur fonctionnement sur la plage de réglage des paramètres influents et pour dimensionner l’unité prototype. Deux modèles du moteur Ericsson, en régime permanent et en régime dynamique, ont été mis en place. Ils ont montré l’influence prépondérante sur les performances du moteur des conditions de température et pression de l’air en entrée de détente et des réglages des instants de fermeture des soupapes. L’effet de la prise en compte des pertes dynamiques (pertes de charge, pertes thermiques à la paroi du cylindre, frottements mécaniques) sur l’estimation des performances du moteur a été étudié. Deux modélisations de l’échangeur ont permis de caractériser les transferts thermiques qui le traversent, incluant le rayonnement et l’encrassement par des particules de suie du côté des gaz brûlés. Le banc d’essai de l’unité de micro-cogénération mis en placeNowadays, the micro combined heat and electrical power (micro-CHP) systems are developing in Europe, in particular because of their interest in terms of primary energy savings. The use of biomass fuel in micro-CHP systems enhances the share of renewable energy in the energy mix. The objective of this work is to develop a test bench for a biomass-fuelled micro-CHP unit composed of a pellet boiler, an Ericsson type hot air engine (decomposed into a compression and an expansion part) and a burned gas-pressurized air heat exchanger inserted in the boiler. Models of every component have been established to characterize their working conditions depending on influent parameter settings and to size the micro-CHP unit. Two models of Ericsson engine, with established and dynamic regimes, were implemented. The preponderant influence of the temperature and pressure conditions at the inlet of the expansion cylinder and of the timing of valve closing on the engine performances are shown. The dynamic model shows the effect of considering the dynamic losses (pressure loss, heat transfer at the cylinder wall, mechanical friction) on the estimation of engine performances. Two models of the heat exchanger allow the characterization of the heat transfers crossing it, taking into account the radiation and the fouling by soot particles on the side of combustion gases. Experimental measurements obtained from the test bench of the micro-CHP unit set up were used in the developed models
Étude théorique et expérimentale d’une unité de micro-cogénération biomasse avec moteur Ericsson
Nowadays, the micro combined heat and electrical power (micro-CHP) systems are developing in Europe, in particular because of their interest in terms of primary energy savings. The use of biomass fuel in micro-CHP systems enhances the share of renewable energy in the energy mix. The objective of this work is to develop a test bench for a biomass-fuelled micro-CHP unit composed of a pellet boiler, an Ericsson type hot air engine (decomposed into a compression and an expansion part) and a burned gas-pressurized air heat exchanger inserted in the boiler. Models of every component have been established to characterize their working conditions depending on influent parameter settings and to size the micro-CHP unit. Two models of Ericsson engine, with established and dynamic regimes, were implemented. The preponderant influence of the temperature and pressure conditions at the inlet of the expansion cylinder and of the timing of valve closing on the engine performances are shown. The dynamic model shows the effect of considering the dynamic losses (pressure loss, heat transfer at the cylinder wall, mechanical friction) on the estimation of engine performances. Two models of the heat exchanger allow the characterization of the heat transfers crossing it, taking into account the radiation and the fouling by soot particles on the side of combustion gases. Experimental measurements obtained from the test bench of the micro-CHP unit set up were used in the developed models.La micro-cogénération, production simultanée d’électricité et de chaleur à échelle domestique, se développe actuellement en Europe du fait notamment de son intérêt en termes d’économie d’énergie primaire. L’utilisation d’un combustible biomasse dans un système de micro-cogénération contribue à augmenter la part d’énergie renouvelable dans le mix énergétique. L’objet de ce travail est le développement d’un banc d’essai d’une unité de micro-cogénération biomasse composée d’une chaudière à pellets, d’un moteur à air chaud de type Ericsson (décomposé en une partie compression et une partie détente) et d’un échangeur gaz brûlés-air pressurisé inséré dans la chaudière. Des modèles de chacun de ces composants ont été établis pour caractériser leur fonctionnement sur la plage de réglage des paramètres influents et pour dimensionner l’unité prototype. Deux modèles du moteur Ericsson, en régime permanent et en régime dynamique, ont été mis en place. Ils ont montré l’influence prépondérante sur les performances du moteur des conditions de température et pression de l’air en entrée de détente et des réglages des instants de fermeture des soupapes. L’effet de la prise en compte des pertes dynamiques (pertes de charge, pertes thermiques à la paroi du cylindre, frottements mécaniques) sur l’estimation des performances du moteur a été étudié. Deux modélisations de l’échangeur ont permis de caractériser les transferts thermiques qui le traversent, incluant le rayonnement et l’encrassement par des particules de suie du côté des gaz brûlés. Le banc d’essai de l’unité de micro-cogénération mis en plac
Les variations respiratoires des dimensions thoraciques à l'état normal et dans l'emphysème pulmonaire
Thèse : Médecine : Université de Bordeaux : 1911N° d'ordre : 12
Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine
A specific heat exchanger has been developed to transfer heat from flue gas to the working fluid (hot air) of the Ericsson engine of a solid biomass-fuelled micro combined heat and power (CHP). In this paper, the theoretical and experimental energetic analyses of this heat exchanger are compared. The experimental performances are described considering energetic and exergetic parameters, in particular the effectiveness on both hot and cold sides. A new exergetic parameter called the exergetic effectiveness is introduced, which allows a comparison between the real and the ideal heat exchanger considering the Second Law of Thermodynamics. A global analysis of exergetic fluxes in the whole micro-CHP system is presented, showing the repartition of the exergy destruction among the components
Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine
In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W) is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger
Study of polycyclic aromatic hydrocarbons, carbon monoxide, nitrogen monoxide and soot emissions from biomass combustion in a wood-fired boiler under varying boiler conditions
International audienc
Causality in Models of Thermal Processes in Ship Engine Rooms with the Use of Bond Graph (BG) Method
With a single approach to modeling elements of different physical nature, the method of Bond Graph (BG) is particularly well suited for modeling energy systems consisting of mechanical, thermal, electrical and hydraulic elements that operate in the power system engine room. The paper refers to the earlier presented [2] new concept of thermal process modeling using the BG method. The authors own suggestions for determining causality in models of thermal processes created by the said concept were given. The analysis of causality makes it possible to demonstrate the model conflicts that prevent the placement of state equations which allows for the direct conduct of simulation experiments. Attention has been drawn to the link between the energy systems models of thermal processes with models of elements of different physical nature. Two examples of determining causality in models of complex energy systems of thermal elements have been presented. The firs relates to the electrical system associated with the process of heat exchange. The second is a model of the mechanical system associated with the thermodynamic process