8 research outputs found

    Etude de l'impact de la sur-expression de la partie C-terminale de LRRK2 mutée G2019S dans les neurones dopaminergiques de la substance noire.

    No full text
    Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) proteins are likely to play crucial roles both in sporadic and familial forms of Parkinson’s disease (PD). The most prevalent mutation in LRRK2 is the G2019S substitution which induces neurotoxicity through a marked increase of its kinase activity. A possible interplay between LRRK2 and α-syn may be involved in the dysfunction and/or in the death of dopaminergic (DA) neurons in the substantia nigra (SNc) in PD. In the first part of the study, we evaluated whether the overexpression of LRRK2G2019S using lentiviral vectors (LVs) and adeno-associated virus (AAV2/9), which can overexpress transgenes selectively in neurons could trigger neurodegeneration in the SNc, in other words, whether cell-autonomous mechanisms are sufficient to trigger the degeneration of DA neurons. We generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2) containing the kinase domain. Results of assays performed in vitro indicated that ΔLRRK2 retains biochemical properties of full length LRRK2. Six months after the stereotaxic injection of LV-ΔLRRK2G2019S in the SNc, the number of DA neurons was unchanged, however, the infection of the SNc with AAV-ΔLRRK2G2019S but not with AAV-ΔLRRK2WT induced a significant ~30% loss of DA neurons. These results suggested that neuronal overexpression of the mutant kinase domain of LRRK2 was sufficient to trigger neurodegeneration in the SNc in the adult brain. In the second part of the study, we aimed at studying whether ΔLRRK2G2019S could increase the neurotoxicity of a mutant form of α-syn (A53T mutation) in vivo in DA neurons. We used a co-infection approach with AAV vectors encoding the α-synA53T, and ΔLRRK2 G2019S alone or with the D1994A mutation (ΔLRRK2G2019S/D1994A) that inactivates the kinase activity of LRRK2. AAVs were stereotaxically co-injected into the rat SNc and histological evaluation was performed at 6 and 15 weeks (early and late time points) post-infection. Results showed that ΔLRRK2G2019S increased the toxicity of α-synA53T in a kinase-dependent manner. Altogether, the present study supports the hypothesis that a functional interaction between LRRK2 and α-syn may play a key role in PD pathogenesis. The new “double hit” model we developed in rats may be of interest to test novel neuroprotective strategies targeting LRRK2/α-syn in vivo.Les protĂ©ines alpha-synuclĂ©ine (α-syn) et leucine-rich repeat kinase 2 (LRRK2) sont deux protĂ©ines ayant un rĂŽle majeur dans la physiopathologie de la maladie de Parkinson (MP) et interviennent aussi bien dans les formes dites sporadiques que dans les formes familiales. La mutation G2019S du gĂšne codant pour LRRK2 est la mutation la plus frĂ©quente. Cette mutation induit une augmentation de l’activitĂ© kinase de LRRK2 qui conduit Ă  sa toxicitĂ©. Plusieurs hypothĂšses convergent vers l’idĂ©e que LRRK2 et l’α-syn interagiraient pour conduire Ă  la dysfonction et/ou la mort des neurones dopaminergiques (DA) de la substance noire (SNc) dans la MP. Dans la premiĂšre partie de cette Ă©tude, diffĂ©rentes formes sauvage (WT) ou mutĂ©e (G2019S) de LRRK2 ont Ă©tĂ© surexprimĂ©es spĂ©cifiquement dans les neurones de la SNc via l’utilisation de vecteurs lentiviraux (LV) et adĂ©no-viraux associĂ©s (AAV). La question principale de cette Ă©tude Ă©tait d’évaluer si l’expression spĂ©cifiquement neuronale de LRRK2 induisait la dĂ©gĂ©nĂ©rescence des neurones DA de la SNc. Nous avons gĂ©nĂ©rĂ© des constructions comportant uniquement la partie C-terminale de LRRK2 (ΔLRRK2) en aval du domaine LRR. In vitro, le fragment ΔLRRK2G2019S prĂ©sente une activitĂ© kinase supĂ©rieure au fragment ΔLRRK2WT avec une augmentation d’activitĂ© comparable Ă  la forme entiĂšre de LRRK2. In vivo, six mois aprĂšs l’injection (PI) de ΔLRRK2 WT ou G2019S dans la SNc, les mesures du nombre de neurones montrent que seul le fragment ΔLRRK2G2019S induit une mort neuronale significative (30%) comparĂ© Ă  la forme ΔLRRK2WT, uniquement lorsque l’expression est gĂ©nĂ©rĂ©e via des vecteurs AAV. Ces rĂ©sultats suggĂšrent que l’expression purement neuronale d’un fragment contenant le domaine kinase de LRRK2 est suffisante pour induire une dĂ©gĂ©nĂ©rescence de la SN. Dans la seconde partie du projet, nous avons Ă©tudiĂ© l’hypothĂšse que ΔLRRK2G2019S via son activitĂ© kinase amplifiĂ©e, pourrait augmenter la toxicitĂ© le l’α-syn mutĂ©e A53T. Pour rĂ©pondre Ă  cette question, les vecteurs AAV codant pour ΔLRRK2 G2019S ou une forme inactive de la kinase (ΔLRRK2G2019S/D1994A), et celui codant pour l’α-syn A53T ont Ă©tĂ© co-injectĂ©s dans la SNc. Les analyses rĂ©alisĂ©es Ă  6 et 15 semaines PI montrent que ΔLRRK2G2019S augmente la mort neuronale induite par l’α-syn A53T d’une maniĂšre kinase dĂ©pendante. Tous ces rĂ©sultats supportent l’hypothĂšse que l’existence d’une interaction fonctionnelle entre LRRK2 et l’α-syn pourrait jouer un rĂŽle fondamental dans la physiopathologie de la MP offrant des possibilitĂ©s de stratĂ©gie de neuroprotection ciblant l’interaction LRRK2/α-syn

    Etude de l'impact de la sur-expression de la partie C-terminale de LRRK2 mutée G2019S dans les neurones dopaminergiques de la substance noire.

    No full text
    Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) proteins are likely to play crucial roles both in sporadic and familial forms of Parkinson’s disease (PD). The most prevalent mutation in LRRK2 is the G2019S substitution which induces neurotoxicity through a marked increase of its kinase activity. A possible interplay between LRRK2 and α-syn may be involved in the dysfunction and/or in the death of dopaminergic (DA) neurons in the substantia nigra (SNc) in PD. In the first part of the study, we evaluated whether the overexpression of LRRK2G2019S using lentiviral vectors (LVs) and adeno-associated virus (AAV2/9), which can overexpress transgenes selectively in neurons could trigger neurodegeneration in the SNc, in other words, whether cell-autonomous mechanisms are sufficient to trigger the degeneration of DA neurons. We generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2) containing the kinase domain. Results of assays performed in vitro indicated that ΔLRRK2 retains biochemical properties of full length LRRK2. Six months after the stereotaxic injection of LV-ΔLRRK2G2019S in the SNc, the number of DA neurons was unchanged, however, the infection of the SNc with AAV-ΔLRRK2G2019S but not with AAV-ΔLRRK2WT induced a significant ~30% loss of DA neurons. These results suggested that neuronal overexpression of the mutant kinase domain of LRRK2 was sufficient to trigger neurodegeneration in the SNc in the adult brain. In the second part of the study, we aimed at studying whether ΔLRRK2G2019S could increase the neurotoxicity of a mutant form of α-syn (A53T mutation) in vivo in DA neurons. We used a co-infection approach with AAV vectors encoding the α-synA53T, and ΔLRRK2 G2019S alone or with the D1994A mutation (ΔLRRK2G2019S/D1994A) that inactivates the kinase activity of LRRK2. AAVs were stereotaxically co-injected into the rat SNc and histological evaluation was performed at 6 and 15 weeks (early and late time points) post-infection. Results showed that ΔLRRK2G2019S increased the toxicity of α-synA53T in a kinase-dependent manner. Altogether, the present study supports the hypothesis that a functional interaction between LRRK2 and α-syn may play a key role in PD pathogenesis. The new “double hit” model we developed in rats may be of interest to test novel neuroprotective strategies targeting LRRK2/α-syn in vivo.Les protĂ©ines alpha-synuclĂ©ine (α-syn) et leucine-rich repeat kinase 2 (LRRK2) sont deux protĂ©ines ayant un rĂŽle majeur dans la physiopathologie de la maladie de Parkinson (MP) et interviennent aussi bien dans les formes dites sporadiques que dans les formes familiales. La mutation G2019S du gĂšne codant pour LRRK2 est la mutation la plus frĂ©quente. Cette mutation induit une augmentation de l’activitĂ© kinase de LRRK2 qui conduit Ă  sa toxicitĂ©. Plusieurs hypothĂšses convergent vers l’idĂ©e que LRRK2 et l’α-syn interagiraient pour conduire Ă  la dysfonction et/ou la mort des neurones dopaminergiques (DA) de la substance noire (SNc) dans la MP. Dans la premiĂšre partie de cette Ă©tude, diffĂ©rentes formes sauvage (WT) ou mutĂ©e (G2019S) de LRRK2 ont Ă©tĂ© surexprimĂ©es spĂ©cifiquement dans les neurones de la SNc via l’utilisation de vecteurs lentiviraux (LV) et adĂ©no-viraux associĂ©s (AAV). La question principale de cette Ă©tude Ă©tait d’évaluer si l’expression spĂ©cifiquement neuronale de LRRK2 induisait la dĂ©gĂ©nĂ©rescence des neurones DA de la SNc. Nous avons gĂ©nĂ©rĂ© des constructions comportant uniquement la partie C-terminale de LRRK2 (ΔLRRK2) en aval du domaine LRR. In vitro, le fragment ΔLRRK2G2019S prĂ©sente une activitĂ© kinase supĂ©rieure au fragment ΔLRRK2WT avec une augmentation d’activitĂ© comparable Ă  la forme entiĂšre de LRRK2. In vivo, six mois aprĂšs l’injection (PI) de ΔLRRK2 WT ou G2019S dans la SNc, les mesures du nombre de neurones montrent que seul le fragment ΔLRRK2G2019S induit une mort neuronale significative (30%) comparĂ© Ă  la forme ΔLRRK2WT, uniquement lorsque l’expression est gĂ©nĂ©rĂ©e via des vecteurs AAV. Ces rĂ©sultats suggĂšrent que l’expression purement neuronale d’un fragment contenant le domaine kinase de LRRK2 est suffisante pour induire une dĂ©gĂ©nĂ©rescence de la SN. Dans la seconde partie du projet, nous avons Ă©tudiĂ© l’hypothĂšse que ΔLRRK2G2019S via son activitĂ© kinase amplifiĂ©e, pourrait augmenter la toxicitĂ© le l’α-syn mutĂ©e A53T. Pour rĂ©pondre Ă  cette question, les vecteurs AAV codant pour ΔLRRK2 G2019S ou une forme inactive de la kinase (ΔLRRK2G2019S/D1994A), et celui codant pour l’α-syn A53T ont Ă©tĂ© co-injectĂ©s dans la SNc. Les analyses rĂ©alisĂ©es Ă  6 et 15 semaines PI montrent que ΔLRRK2G2019S augmente la mort neuronale induite par l’α-syn A53T d’une maniĂšre kinase dĂ©pendante. Tous ces rĂ©sultats supportent l’hypothĂšse que l’existence d’une interaction fonctionnelle entre LRRK2 et l’α-syn pourrait jouer un rĂŽle fondamental dans la physiopathologie de la MP offrant des possibilitĂ©s de stratĂ©gie de neuroprotection ciblant l’interaction LRRK2/α-syn

    Effect of the overexpression of the C-terminal fragment of LRRK2 harboring the G2019S substitution in dopaminergic neurons

    No full text
    Les protĂ©ines alpha-synuclĂ©ine (α-syn) et leucine-rich repeat kinase 2 (LRRK2) sont deux protĂ©ines ayant un rĂŽle majeur dans la physiopathologie de la maladie de Parkinson (MP) et interviennent aussi bien dans les formes dites sporadiques que dans les formes familiales. La mutation G2019S du gĂšne codant pour LRRK2 est la mutation la plus frĂ©quente. Cette mutation induit une augmentation de l’activitĂ© kinase de LRRK2 qui conduit Ă  sa toxicitĂ©. Plusieurs hypothĂšses convergent vers l’idĂ©e que LRRK2 et l’α-syn interagiraient pour conduire Ă  la dysfonction et/ou la mort des neurones dopaminergiques (DA) de la substance noire (SNc) dans la MP. Dans la premiĂšre partie de cette Ă©tude, diffĂ©rentes formes sauvage (WT) ou mutĂ©e (G2019S) de LRRK2 ont Ă©tĂ© surexprimĂ©es spĂ©cifiquement dans les neurones de la SNc via l’utilisation de vecteurs lentiviraux (LV) et adĂ©no-viraux associĂ©s (AAV). La question principale de cette Ă©tude Ă©tait d’évaluer si l’expression spĂ©cifiquement neuronale de LRRK2 induisait la dĂ©gĂ©nĂ©rescence des neurones DA de la SNc. Nous avons gĂ©nĂ©rĂ© des constructions comportant uniquement la partie C-terminale de LRRK2 (ΔLRRK2) en aval du domaine LRR. In vitro, le fragment ΔLRRK2G2019S prĂ©sente une activitĂ© kinase supĂ©rieure au fragment ΔLRRK2WT avec une augmentation d’activitĂ© comparable Ă  la forme entiĂšre de LRRK2. In vivo, six mois aprĂšs l’injection (PI) de ΔLRRK2 WT ou G2019S dans la SNc, les mesures du nombre de neurones montrent que seul le fragment ΔLRRK2G2019S induit une mort neuronale significative (30%) comparĂ© Ă  la forme ΔLRRK2WT, uniquement lorsque l’expression est gĂ©nĂ©rĂ©e via des vecteurs AAV. Ces rĂ©sultats suggĂšrent que l’expression purement neuronale d’un fragment contenant le domaine kinase de LRRK2 est suffisante pour induire une dĂ©gĂ©nĂ©rescence de la SN. Dans la seconde partie du projet, nous avons Ă©tudiĂ© l’hypothĂšse que ΔLRRK2G2019S via son activitĂ© kinase amplifiĂ©e, pourrait augmenter la toxicitĂ© le l’α-syn mutĂ©e A53T. Pour rĂ©pondre Ă  cette question, les vecteurs AAV codant pour ΔLRRK2 G2019S ou une forme inactive de la kinase (ΔLRRK2G2019S/D1994A), et celui codant pour l’α-syn A53T ont Ă©tĂ© co-injectĂ©s dans la SNc. Les analyses rĂ©alisĂ©es Ă  6 et 15 semaines PI montrent que ΔLRRK2G2019S augmente la mort neuronale induite par l’α-syn A53T d’une maniĂšre kinase dĂ©pendante. Tous ces rĂ©sultats supportent l’hypothĂšse que l’existence d’une interaction fonctionnelle entre LRRK2 et l’α-syn pourrait jouer un rĂŽle fondamental dans la physiopathologie de la MP offrant des possibilitĂ©s de stratĂ©gie de neuroprotection ciblant l’interaction LRRK2/α-syn.Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) proteins are likely to play crucial roles both in sporadic and familial forms of Parkinson’s disease (PD). The most prevalent mutation in LRRK2 is the G2019S substitution which induces neurotoxicity through a marked increase of its kinase activity. A possible interplay between LRRK2 and α-syn may be involved in the dysfunction and/or in the death of dopaminergic (DA) neurons in the substantia nigra (SNc) in PD. In the first part of the study, we evaluated whether the overexpression of LRRK2G2019S using lentiviral vectors (LVs) and adeno-associated virus (AAV2/9), which can overexpress transgenes selectively in neurons could trigger neurodegeneration in the SNc, in other words, whether cell-autonomous mechanisms are sufficient to trigger the degeneration of DA neurons. We generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2) containing the kinase domain. Results of assays performed in vitro indicated that ΔLRRK2 retains biochemical properties of full length LRRK2. Six months after the stereotaxic injection of LV-ΔLRRK2G2019S in the SNc, the number of DA neurons was unchanged, however, the infection of the SNc with AAV-ΔLRRK2G2019S but not with AAV-ΔLRRK2WT induced a significant ~30% loss of DA neurons. These results suggested that neuronal overexpression of the mutant kinase domain of LRRK2 was sufficient to trigger neurodegeneration in the SNc in the adult brain. In the second part of the study, we aimed at studying whether ΔLRRK2G2019S could increase the neurotoxicity of a mutant form of α-syn (A53T mutation) in vivo in DA neurons. We used a co-infection approach with AAV vectors encoding the α-synA53T, and ΔLRRK2 G2019S alone or with the D1994A mutation (ΔLRRK2G2019S/D1994A) that inactivates the kinase activity of LRRK2. AAVs were stereotaxically co-injected into the rat SNc and histological evaluation was performed at 6 and 15 weeks (early and late time points) post-infection. Results showed that ΔLRRK2G2019S increased the toxicity of α-synA53T in a kinase-dependent manner. Altogether, the present study supports the hypothesis that a functional interaction between LRRK2 and α-syn may play a key role in PD pathogenesis. The new “double hit” model we developed in rats may be of interest to test novel neuroprotective strategies targeting LRRK2/α-syn in vivo

    Hippocampal Excitatory Synaptic Transmission and Plasticity Are Differentially Altered during Postnatal Development by Loss of the X-Linked Intellectual Disability Protein Oligophrenin-1

    No full text
    International audienceOligophrenin-1 (OPHN1) is a Rho-GTPase-activating protein (RhoGAP), whose mutations are associated with X-linked intellectual disability (XLID). OPHN1 is enriched at the synapse in both pre- and postsynaptic compartments, where it regulates the RhoA/ROCK/MLC2 signaling pathway, playing a critical role in cytoskeleton remodeling and vesicle recycling. Ophn1 knockout (KO) adult mice display some behavioral deficits in multiple tasks, reminiscent of some symptoms in the human pathology. We also previously reported a reduction in dendritic spine density in the adult hippocampus of KO mice. Yet the nature of the deficits occurring in these mice during postnatal development remains elusive. Here, we show that juvenile KO mice present normal basal synaptic transmission, but altered synaptic plasticity, with a selective impairment in long-term depression, but no change in long-term potentiation. This contrasts with the functional deficits that these mice display at the adult stage, as we found that both basal synaptic transmission and long-term potentiation are reduced at later stages, due to presynaptic alterations. In addition, the number of excitatory synapses in adult is increased, suggesting some unsuccessful compensation. Altogether, these results suggest that OPHN1 function at synapses is differentially affected during maturation of the brain, which provides some therapeutic opportunities for early intervention

    PIEZO1 expression at the glio-vascular unit adjusts to neuroinflammation in seizure conditions

    No full text
    Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with that of the pro-inflammatory biomarkers TNFα, IL-1ÎČ, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex. Using an experimental mouse model of MTLE, we found hippocampal Piezo1 and cytokine expression levels increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1ÎČ, and Nf-kb expression in the hippocampal foci. Next, by combining RNAscope with immunofluorescence, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1ÎČ upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 neuro-mechanobiology and neuro-inflammatory cell remodeling. The precise cellular and functional mechanisms regulating this interplay in disease conditions warrant further investigation

    Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain.

    No full text
    International audienceProlonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, we aimed to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals. Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of excitatory synaptic transmission was specifically increased in NOAEL conditions, with a predominant influence in males, suggesting a reduced probability of neurotransmitter release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed mice. Next, we explore whether these neurophysiological modifications are associated with neuro-glia changes in the somatosensory cortex and hippocampus. High-resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Vglut1+ Homer1+ synapses. Microglial Iba1+ cells displayed a shortening of their ramifications, a sign of cellular reactivity that was more pronounced in males at NOAEL levels. The morphology of GFAP+ astrocytes was generally not modified. Finally, we asked whether mouse-specific cross-correlations exist among all data sets generated. This examination included the novel object recognition (NOR) test performed before ex vivo functional and immunohistochemical examinations. We report a negative linear regression between the number of synapses and NOR or LTP maintenance when plotting ADI and NOAEL datasets. These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the significance of these findings to real-world consumer situations and long-term brain resilience

    Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes

    No full text
    International audienceIntroduction: Brain dysfunction in neurological diseases is frequently mediated by the impairment of neuronal and non-neuronal cells. Although DMPK gene expression is higher in cortical astrocytes than in neurons isolated from adult human and mouse brains, the contribution of astroglia to DM1 brain disease has been poorly investigated. Methods: Transgenic DMSXL mice express expanded human DMPK transcripts in multiple cell types of the brain, providing a good model to investigate the impact of RNA toxicity on astroglia.Results: DMSXL astrocytes exhibit impaired ramification and polarization in vivo, as well as defects in adhesion, spreading and migration in culture. In line with these pronounced phenotypes, DMSXL astrocytes express high levels of toxic RNA and accumulate abundant RNA foci, relative to neurons. RNA sequencing revealed MBNL-dependent RNA spliceopathy, which affects primarily transcripts that regulate cell adhesion, cytoskeleton and morphogenesis. To study the impact of defective astrocytes on neurons, we used co-culture cell systems, and found that DMSXL astrocytes impair neuritogenesis.Conclusions: We demonstrate that DM1 impacts astrocyte cell biology, possibly compromising the support and regulation of synaptic function through defective neuroglia interplay

    Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes

    No full text
    International audienceIntroduction: Brain dysfunction in neurological diseases is frequently mediated by the impairment of neuronal and non-neuronal cells. Although DMPK gene expression is higher in cortical astrocytes than in neurons isolated from adult human and mouse brains, the contribution of astroglia to DM1 brain disease has been poorly investigated. Methods: Transgenic DMSXL mice express expanded human DMPK transcripts in multiple cell types of the brain, providing a good model to investigate the impact of RNA toxicity on astroglia.Results: DMSXL astrocytes exhibit impaired ramification and polarization in vivo, as well as defects in adhesion, spreading and migration in culture. In line with these pronounced phenotypes, DMSXL astrocytes express high levels of toxic RNA and accumulate abundant RNA foci, relative to neurons. RNA sequencing revealed MBNL-dependent RNA spliceopathy, which affects primarily transcripts that regulate cell adhesion, cytoskeleton and morphogenesis. To study the impact of defective astrocytes on neurons, we used co-culture cell systems, and found that DMSXL astrocytes impair neuritogenesis.Conclusions: We demonstrate that DM1 impacts astrocyte cell biology, possibly compromising the support and regulation of synaptic function through defective neuroglia interplay
    corecore