1,577 research outputs found

    Investigation of Statistical and Imaging Methods for Luminescence Detection of Irradiated Ingredients

    Get PDF
    This project investigated two potential approaches to improving the reliability of lumines-cence methods for detecting minor irradiated ingredients in foods. Whereas in the 1980’s there were no validated methods for laboratory detection of irradiated foods, work conducted in the UK and elsewhere by the mid 1990’s had resulted in the development of a series of physical, chemical and biological methods capable of detecting a range of irradiated food classes. Of these the luminescence methods embodied in EN1788 (Thermoluminescence) and EN13751 (Photostimulated luminescence) standards have been applied to detection of a vari-ety of products including herbs and spices, and seafood. In common with the other EN stan-dard methods almost all validation work had been originally conducted using pure irradiated or unirradiated ingredients. Yet application experience had shown the presence of mixed products containing both irradiated and unirradiated ingredients. A short study was commis-sioned by MAFF to investigate the impact of blending on standard EN1788 methods, and on the provisional draft EN13751 (the standard having been published in the meantime) method. This showed the impact of dilution of irradiated material between 10% and 0.1% concentra-tions on detection rates, which unsurprisingly are reduced by extreme dilution. UK labelling regulation, both before and after adoption of the European Directive on Food Irradiation, call for labelling of all irradiated ingredients regardless of concentration or origin within the final product. This study was therefore motivated by the recognition of the long term need for im-proved methods to improve reliability at low concentrations. Two complementary approaches were investigated. The project first examined whether TL data collected using the EN1788 method could be enhanced using advanced statistical proce-dures. Data sets from the SURRC TL archive, and from project CSA4790 were used both to define the characteristics of irradiated and unirradiated end members, and to assess classifica-tion methods using the controlled blending experimental data sets of CSA 4790. Multivariate analyses, based on principal components analysis and discriminant analysis of glow curve data; kinetic deconvolution approaches coupled to PCA and DA, and neural analyses were investigated and compared with detection rates achieved using expert visual classification. To complement this experiments were undertaken to explore the potential of using focussed laser stimulation to produce spatially resolved measurements from mineral grains separated from foods. Two systems were evaluated based on IR and visible band lasers. Work was under-taken to explore sample presentation and to assess the ability of this approach to distinguish mixtures of irradiated and unirradiated grains. The statistical work was successful in developing three approaches which could be used for objective identification of irradiated materials. Pure irradiated and unirradiated data sets from 150 sample pairs were obtained having searched the SUERC archive of more than 3500 lu-minescence analyses. These were used to set up multivariate analyses based on the ap-proaches outlined above. Performance in recognising irradiated ingredients using these meth-ods was then assessed with data drawn from the MAFF blending investigation, comprising 160 permutations of irradiated and unirradiated herbs and spices at 10%, 1% and 0.1% con-centrations. It was possible to achieve good detection rates with alatistical approaches, the best approaches inigated being the use of glow curve deconvolution coupwith li discrimination, and the use of neural appros. The absolute performance achieved matched that opert visual clfication utilising the revised EN1788 criterwhich were adopted within the international standauring course of this project. The use of ad-vancedtistical methods, while not adding performance, can pde objective support to visual classifications. During performance assessment it was aloted that theformance of all methods wasficiently close to infer that detections rates are most dependent on the statistical presence or absence of irradiated grains within the extracted samples used for TL analysis. This raises practical suggestions for improving detection rates at low concentrations based on the use of larger samples and more specific mineral separation approaches. These may be worth investigating further. Laser scanning approaches were also investigated using highly focussed laser beams to stimulated luminescence sequentially from different parts of separated mineral samples. Work was conducted using a system which had been developed in earlier work at SUERC, and then followed by additional investigation using an improved instrument built during the project. Initial work confirmed the feasibility of using laser scanning approaches to obtain spatially resolved luminescence data at or near the dimensions of individual mineral grains. Practical obstacles included the recognition that laser scattering from surfaces coated with mineral grains introduced an element of cross-talk between different parts of the sample, and difficulties in accurate re-positioning of the sample using the first generation prototype in-strument. Work was conducted to investigate a series of different sample presentation media to improve the former, and to incorporate high precision mechanical and optoelectronic means of re-positioning samples between initial measurements, external irradiation, and sub-sequent re-measurement. Both IR and visible band semiconductor lasers were investigated with successful production of single grain images. The short and medium term reliability of the lasers used was acceptable. The lasers used both however eventually failed, which sug-gests that long term lifetime may be an issue for further work. Of the two lasers the IR laser in particular gave a good signal to background ratio for discriminating between irradiated and unirradiated grains. Quantitative analysis of the grain resolved images confirms the potential of this approach in identifying minor irradiated components. The overall conclusions of the work are that both statistical approaches and imaging instru-ments are able to enhance current methods. The observation that visual classification can match the performance even of deconvolution or neural approaches suggests that future effort should be directed more towards improvement of grain statistics in conventional measure-ments, and in further development and investigation of imaging approaches. In these ways it can anticipated that the performance of standard luminescence methods for detecting dilute mixtures of irradiated and unirradiated food ingredients could be significantly improved. To do so would further enhance work conducted by FSA and other bodies to ensure that regula-tions governing the use of irradiation in food processing and the labelling of imported foods are followed

    Investigation of Statistical and Imaging Methods for Luminescence Detection of Irradiated Ingredients

    Get PDF
    This project investigated two potential approaches to improving the reliability of lumines-cence methods for detecting minor irradiated ingredients in foods. Whereas in the 1980’s there were no validated methods for laboratory detection of irradiated foods, work conducted in the UK and elsewhere by the mid 1990’s had resulted in the development of a series of physical, chemical and biological methods capable of detecting a range of irradiated food classes. Of these the luminescence methods embodied in EN1788 (Thermoluminescence) and EN13751 (Photostimulated luminescence) standards have been applied to detection of a vari-ety of products including herbs and spices, and seafood. In common with the other EN stan-dard methods almost all validation work had been originally conducted using pure irradiated or unirradiated ingredients. Yet application experience had shown the presence of mixed products containing both irradiated and unirradiated ingredients. A short study was commis-sioned by MAFF to investigate the impact of blending on standard EN1788 methods, and on the provisional draft EN13751 (the standard having been published in the meantime) method. This showed the impact of dilution of irradiated material between 10% and 0.1% concentra-tions on detection rates, which unsurprisingly are reduced by extreme dilution. UK labelling regulation, both before and after adoption of the European Directive on Food Irradiation, call for labelling of all irradiated ingredients regardless of concentration or origin within the final product. This study was therefore motivated by the recognition of the long term need for im-proved methods to improve reliability at low concentrations. Two complementary approaches were investigated. The project first examined whether TL data collected using the EN1788 method could be enhanced using advanced statistical proce-dures. Data sets from the SURRC TL archive, and from project CSA4790 were used both to define the characteristics of irradiated and unirradiated end members, and to assess classifica-tion methods using the controlled blending experimental data sets of CSA 4790. Multivariate analyses, based on principal components analysis and discriminant analysis of glow curve data; kinetic deconvolution approaches coupled to PCA and DA, and neural analyses were investigated and compared with detection rates achieved using expert visual classification. To complement this experiments were undertaken to explore the potential of using focussed laser stimulation to produce spatially resolved measurements from mineral grains separated from foods. Two systems were evaluated based on IR and visible band lasers. Work was under-taken to explore sample presentation and to assess the ability of this approach to distinguish mixtures of irradiated and unirradiated grains. The statistical work was successful in developing three approaches which could be used for objective identification of irradiated materials. Pure irradiated and unirradiated data sets from 150 sample pairs were obtained having searched the SUERC archive of more than 3500 lu-minescence analyses. These were used to set up multivariate analyses based on the ap-proaches outlined above. Performance in recognising irradiated ingredients using these meth-ods was then assessed with data drawn from the MAFF blending investigation, comprising 160 permutations of irradiated and unirradiated herbs and spices at 10%, 1% and 0.1% con-centrations. It was possible to achieve good detection rates with alatistical approaches, the best approaches inigated being the use of glow curve deconvolution coupwith li discrimination, and the use of neural appros. The absolute performance achieved matched that opert visual clfication utilising the revised EN1788 criterwhich were adopted within the international standauring course of this project. The use of ad-vancedtistical methods, while not adding performance, can pde objective support to visual classifications. During performance assessment it was aloted that theformance of all methods wasficiently close to infer that detections rates are most dependent on the statistical presence or absence of irradiated grains within the extracted samples used for TL analysis. This raises practical suggestions for improving detection rates at low concentrations based on the use of larger samples and more specific mineral separation approaches. These may be worth investigating further. Laser scanning approaches were also investigated using highly focussed laser beams to stimulated luminescence sequentially from different parts of separated mineral samples. Work was conducted using a system which had been developed in earlier work at SUERC, and then followed by additional investigation using an improved instrument built during the project. Initial work confirmed the feasibility of using laser scanning approaches to obtain spatially resolved luminescence data at or near the dimensions of individual mineral grains. Practical obstacles included the recognition that laser scattering from surfaces coated with mineral grains introduced an element of cross-talk between different parts of the sample, and difficulties in accurate re-positioning of the sample using the first generation prototype in-strument. Work was conducted to investigate a series of different sample presentation media to improve the former, and to incorporate high precision mechanical and optoelectronic means of re-positioning samples between initial measurements, external irradiation, and sub-sequent re-measurement. Both IR and visible band semiconductor lasers were investigated with successful production of single grain images. The short and medium term reliability of the lasers used was acceptable. The lasers used both however eventually failed, which sug-gests that long term lifetime may be an issue for further work. Of the two lasers the IR laser in particular gave a good signal to background ratio for discriminating between irradiated and unirradiated grains. Quantitative analysis of the grain resolved images confirms the potential of this approach in identifying minor irradiated components. The overall conclusions of the work are that both statistical approaches and imaging instru-ments are able to enhance current methods. The observation that visual classification can match the performance even of deconvolution or neural approaches suggests that future effort should be directed more towards improvement of grain statistics in conventional measure-ments, and in further development and investigation of imaging approaches. In these ways it can anticipated that the performance of standard luminescence methods for detecting dilute mixtures of irradiated and unirradiated food ingredients could be significantly improved. To do so would further enhance work conducted by FSA and other bodies to ensure that regula-tions governing the use of irradiation in food processing and the labelling of imported foods are followed

    The effect of flight line spacing on radioactivity inventory and spatial feature characteristics of airborne gamma-ray spectrometry data

    Get PDF
    Airborne Gamma Spectrometry (AGS) is well suited to the mapping of radioactivity in the environment. Flight parameters (e.g. speed and line spacing) directly affect the rate of area coverage, cost, and data quality of any survey. The influences of line spacing have been investigated for data from inter‐tidal, coastal and upland environments with a range of <sup>137</sup>Cs activity concentrations and depositional histories. Estimates of the integrated <sup>137</sup>Cs activity (‘inventory’) within specified areas and the shapes of depositional features were calculated for subsets of the data at different line spacings. Features with dimensions greater than the line spacing show variations in inventory and area of less than 3%, and features with dimensions less than the line spacing show larger variations and a decreased probability of detection. The choice of line spacing for a task is dependent on the dimensions of the features of interest and required edge definition. Options for line spacing for different tasks are suggested. It is noted that for regional mapping, even 5–10 km line spacing can produce useful data

    Investigating and learning lessons from early experiences of implementing ePrescribing systems into NHS hospitals:a questionnaire study

    Get PDF
    Background: ePrescribing systems have significant potential to improve the safety and efficiency of healthcare, but they need to be carefully selected and implemented to maximise benefits. Implementations in English hospitals are in the early stages and there is a lack of standards guiding the procurement, functional specifications, and expected benefits. We sought to provide an updated overview of the current picture in relation to implementation of ePrescribing systems, explore existing strategies, and identify early lessons learned.Methods: a descriptive questionnaire-based study, which included closed and free text questions and involved both quantitative and qualitative analysis of the data generated.Results: we obtained responses from 85 of 108 NHS staff (78.7% response rate). At least 6% (n = 10) of the 168 English NHS Trusts have already implemented ePrescribing systems, 2% (n = 4) have no plans of implementing, and 34% (n = 55) are planning to implement with intended rapid implementation timelines driven by high expectations surrounding improved safety and efficiency of care. The majority are unclear as to which system to choose, but integration with existing systems and sophisticated decision support functionality are important decisive factors. Participants highlighted the need for increased guidance in relation to implementation strategy, system choice and standards, as well as the need for top-level management support to adequately resource the project. Although some early benefits were reported by hospitals that had already implemented, the hoped for benefits relating to improved efficiency and cost-savings remain elusive due to a lack of system maturity.Conclusions: whilst few have begun implementation, there is considerable interest in ePrescribing systems with ambitious timelines amongst those hospitals that are planning implementations. In order to ensure maximum chances of realising benefits, there is a need for increased guidance in relation to implementation strategy, system choice and standards, as well as increased financial resources to fund local activitie

    Psychopolitics: Peter Sedgwick’s legacy for mental health movements

    Get PDF
    This paper re-considers the relevance of Peter Sedgwick's Psychopolitics (1982) for a politics of mental health. Psychopolitics offered an indictment of ‘anti-psychiatry’ the failure of which, Sedgwick argued, lay in its deconstruction of the category of ‘mental illness’, a gesture that resulted in a politics of nihilism. ‘The radical who is only a radical nihilist’, Sedgwick observed, ‘is for all practical purposes the most adamant of conservatives’. Sedgwick argued, rather, that the concept of ‘mental illness’ could be a truly critical concept if it was deployed ‘to make demands upon the health service facilities of the society in which we live’. The paper contextualizes Psychopolitics within the ‘crisis tendencies’ of its time, surveying the shifting welfare landscape of the subsequent 25 years alongside Sedgwick's continuing relevance. It considers the dilemma that the discourse of ‘mental illness’ – Sedgwick's critical concept – has fallen out of favour with radical mental health movements yet remains paradigmatic within psychiatry itself. Finally, the paper endorses a contemporary perspective that, while necessarily updating Psychopolitics, remains nonetheless ‘Sedgwickian’

    Quantitative beta autoradiography of a heterogeneous granulite sample and implications for luminescence dating

    Get PDF
    Beta dose rate heterogeneity is a known source of scatter in OSL measurement and equivalent dose distributions. Without proper methods to describe and account for it, it can contribute significantly to the uncertainties in OSL ages. For this reason, investigating the beta dose rate (β Dr) distribution is necessary to improve the dating of heterogeneous samples. Here we present a method for quantitative and high sensitivity autoradiographic imaging of beta dose rates. It is demonstrated using highly heterogeneous granulite rock samples. The accuracy and sensitivity of this method is improved using pulsed laser stimulation, and by underground exposure of samples in an ultra-low background environment. Results are calibrated using gamma (γ)irradiation and Monte Carlo simulation and have been validated using homogeneous dose rate standards. Combining analysis of autoradiography results and SEM backscattered images of the same samples allows determination of the dose rate distributions in the different mineral phases. A significant difference between the dose rate of K-feldspar grains obtained from the imaging and the dose rates calculated using methods commonly used in OSL dating is noted because of the clustering of grains in the sample. This represents a risk of bias in age determination in coarse grained rock samples which can be analysed using dose rate imaging methods. The beta Dr spatial distributions result in a significant dose scattering received by single grains, even compared to the total dose rate. The effect of such beta dose rate distributions on OSL dating of coarse-grained crystalline materials is discussed

    Diagnostics and the challenge of antimicrobial resistance: a survey of UK livestock veterinarians’ perceptions and practices

    Get PDF
    This is the author accepted manuscript. The final version is available from BMJ Publishing Group via the DOI in this recordBackground This paper explores the current role and place of diagnostic tests in the treatment of farm animal disease. With the growing focus on reduced reliance on antibiotic medicines in both animal and human patient care, attention is increasingly being focused on the practice, the technology and the function of diagnostic tests and how these can support responsible antimicrobial use. Emerging diagnostic technologies offer the possibility of more rapid testing for bacterial disease, while food chain actors and others are increasingly seeking to make diagnostic tests mandatory before the use of critically important antibiotics. Method This paper reports the findings of a recent large-scale online survey of UK farm animal veterinarians (n=153) which investigated current veterinary diagnostic practice with particular attention to the relationship between diagnostic test use and antibiotic treatment. Results Results revealed a range of factors that influence veterinary diagnostic practice and demonstrate the continuing importance of clinical observation and animal/herd knowledge in the selection of antibiotic treatment. Conclusion The findings identify a considerable ambivalence on the part of farm animal veterinarians regarding the current and future uses of rapid and point-of-care diagnostic tests as a means of improving clinical diagnosis and addressing inappropriate antibiotic medicine use.Economic and Social Research Council (ESRC

    Evaluational adjectives

    Get PDF
    This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")—context-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions

    Exploring new frontiers in marine radioisotope tracing - adapting to new opportunities and challenges

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cresswell, T., Metian, M., Fisher, N. S., Charmasson, S., Hansman, R. L., Bam, W., Bock, C., & Swarzenski, P. W. Exploring new frontiers in marine radioisotope tracing - adapting to new opportunities and challenges. Frontiers in Marine Science, 7, (2020): 406, doi:10.3389/fmars.2020.00406.Radioisotopes have been used in earth and environmental sciences for over 150 years and provide unique tools to study environmental processes in great detail from a cellular level through to an oceanic basin scale. These nuclear techniques have been employed to understand coastal and marine ecosystems via laboratory and field studies in terms of how aquatic organisms respond to environmental stressors, including temperature, pH, nutrients, metals, organic anthropogenic contaminants, and biological toxins. Global marine issues, such as ocean warming, deoxygenation, plastic pollution, ocean acidification, increased duration, and intensity of toxic harmful algal blooms (HABs), and coastal contamination are all impacting marine environments, thereby imposing various environmental and economic risks. Being able to reliably assess the condition of coastal and marine ecosystems, and how they may respond to future disturbances, can provide vital information for society in the sustainable management of their marine environments. This paper summarizes the historical use of radiotracers in these systems, describes how existing techniques of radioecological tracing can be developed for specific current environmental issues and provides information on emerging issues that would benefit from current and new radiotracer methods. Current challenges with using radioecological tracers and opportunities are highlighted, as well as opportunities to maximize the application of these methods to greatly increase the ability of environmental managers to conduct evidence-based management of coastal and marine ecosystems.The IAEA is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco. This contribution was made within the framework of the IAEA CRP on “Applied radioecological tracers to assess coastal and marine ecosystem health” (K41019)
    corecore