6,676 research outputs found

    The infrared and molecular environment surrounding the Wolf-Rayet star WR130

    Get PDF
    We present a study of the molecular CO gas and mid/far infrared radiation arising from the environment surrounding the Wolf-Rayet (W-R) star 130. We use the multi-wavelength data to analyze the properties of the dense gas and dust, and its possible spatial correlation with that of Young Stellar Objects (YSOs). We use CO J=1-0 data from the FCRAO survey as tracer of the molecular gas, and mid/far infrared data from the recent WISE and Herschel space surveys to study the dust continuum radiation and to identify a population of associated candidate YSOs. The spatial distribution of the molecular gas shows a ring-like structure very similar to that observed in the HI gas, and over the same velocity interval. The relative spatial distribution of the HI and CO components is consistent with a photo-dissociation region. We have identified and characterized four main and distinct molecular clouds that create this structure. Cold dust is coincident with the dense gas shown in the CO measurements. We have found several cYSOs that lie along the regions with the highest gas column density, and suggest that they are spatially correlated with the shell. These are indicative of regions of star formation induced by the strong wind and ionization of the WR star.Comment: 15 pages, 12 figures, 6 Tables. Accepted for publication in MNRA

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    Multiple scattering effects in quasi free scattering from halo nuclei: a test to Distorted Wave Impulse Approximation

    Full text link
    Full Faddeev-type calculations are performed for 11^{11}Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like Distorted Wave Impulse Approximation that are based on an incomplete and truncated multiple scattering expansion.Comment: 7 pages, 16 figures, to be published in Phys. Rev.

    Role of Conical Intersections on the Efficiency of Fluorescent Organic Molecular Crystals

    Get PDF
    Organic molecular crystals are attractive materials for luminescent applications because of their promised tunability. However, the link between the chemical structure and emissive behavior is poorly understood because of the numerous interconnected factors which are at play in determining radiative and nonradiative behaviors at the solid-state level. In particular, the decay through conical intersection dominates the nonadiabatic regions of the potential energy surface, and thus, their accessibility is a telling indicator of the luminosity of the material. In this study, we investigate the radiative mechanism for five organic molecular crystals which display a solid-state emission, with a focus on the role of conical intersections in their photomechanisms. The objective is to situate the importance of the accessibility of conical intersections with regards to emissive behavior, taking into account other nonradiative decay channels, namely, vibrational decay, and exciton hopping. We begin by giving a brief overview of the structural patterns of the five systems within a larger pool of 13 crystals for a richer comparison. We observe that because of the prevalence of sheet like and herringbone packing in organic molecular crystals, the conformational diversity of crystal dimers is limited. Additionally, similarly spaced dimers have exciton coupling values of a similar order within a 50 meV interval. Next, we focus on three exemplary cases, where we disentangle the role of nonradiative decay mechanisms and show how rotational minimum energy conical intersections in vacuum lead to puckered ones in the crystal, increasing their instability upon crystallization in typical packing motifs. In contrast, molecules with puckered conical intersections in vacuum tend to conserve this trait upon crystallization, and therefore, their quantum yield of fluorescence is determined predominantly by other nonradiative decay mechanisms

    Continuous spectra in high-harmonic generation driven by multicycle laser pulses

    Get PDF
    We present observations of the emission of XUV continua in the 20-37 eV region by high harmonic generation (HHG) with 44-7 fs7\ \mathrm{fs} pulses focused onto a Kr gas jet. The underlying mechanism relies on coherent control of the relative delays and phases between individually generated attosecond pulse, achievable by adjusting the chirp of the driving pulses and the interaction geometry. Under adequate negative chirp and phase matching conditions, the resulting interpulse interference yields a continuum XUV spectrum, which is due to both microscopic and macroscopic (propagation) contributions. This technique opens the route for modifying the phase of individual attosecond pulses and for the coherent synthesis of XUV continua from multicycle driving laser pulses without the need of an isolated attosecond burst.Comment: 14 pages, 5 figures. Submitted to Physical Review

    Grain size limits derived from 3.6 {\mu}m and 4.5 {\mu}m coreshine

    Get PDF
    Recently discovered scattered light from molecular cloud cores in the wavelength range 3-5 {\mu}m (called "coreshine") seems to indicate the presence of grains with sizes above 0.5 {\mu}m. We aim to analyze 3.6 and 4.5 {\mu}m coreshine from molecular cloud cores to probe the largest grains in the size distribution. We analyzed dedicated deep Cycle 9 Spitzer IRAC observations in the 3.6 and 4.5 {\mu}m bands for a sample of 10 low-mass cores. We used a new modeling approach based on a combination of ratios of the two background- and foreground-subtracted surface brightnesses and observed limits of the optical depth. The dust grains were modeled as ice-coated silicate and carbonaceous spheres. We discuss the impact of local radiation fields with a spectral slope differing from what is seen in the DIRBE allsky maps. For the cores L260, ecc806, L1262, L1517A, L1512, and L1544, the model reproduces the data with maximum grain sizes around 0.9, 0.5, 0.65, 1.5, 0.6, and > 1.5 {\mu}m, respectively. The maximum coreshine intensities of L1506C, L1439, and L1498 in the individual bands require smaller maximum grain sizes than derived from the observed distribution of band ratios. Additional isotropic local radiation fields with a spectral shape differing from the DIRBE map shape do not remove this discrepancy. In the case of Rho Oph 9, we were unable to reliably disentangle the coreshine emission from background variations and the strong local PAH emission. Considering surface brightness ratios in the 3.6 and 4.5 {\mu}m bands across a molecular cloud core is an effective method of disentangling the complex interplay of structure and opacities when used in combination with observed limits of the optical depth.Comment: 23 pages, 18 figures, accepted for publication in A&
    • …
    corecore