118 research outputs found

    Distinguishing Lead and Molecule States in Graphene-Based Single-Electron Transistors

    Get PDF
    Graphene provides a two-dimensional platform for contacting individual molecules, which enables transport spectroscopy of molecular orbital, spin, and vibrational states. Here we report single-electron tunneling through a molecule that has been anchored to two graphene leads. Quantum interference within the graphene leads gives rise to an energy-dependent transmission and fluctuations in the sequential tunnel-rates. The lead states are electrostatically tuned by a global back-gate, resulting in a distinct pattern of varying intensity in the measured conductance maps. This pattern could potentially obscure transport features that are intrinsic to the molecule under investigation. Using ensemble averaged magneto-conductance measurements, lead and molecule states are disentangled, enabling spectroscopic investigation of the single molecule

    Loss of ASAP1 in mice impairs adipogenic and osteogenic differentiation of mesenchymal progenitor cells through dysregulation of FAK/Src and AKT signaling

    Get PDF
    ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis for a variety of cancers, and promotes cell migration, invasion and metastasis. Little is known about its physiological role. In this study, we used mice with a gene-trap inactivated ASAP1 locus to study the functional role of ASAP1 in vivo, and found defects in tissues derived from mesenchymal progenitor cells. Loss of ASAP1 led to growth retardation and delayed ossification typified by enlarged hypertrophic zones in growth plates and disorganized chondro-osseous junctions. Furthermore, loss of ASAP1 led to delayed adipocyte development and reduced fat depot formation. Consistently, deletion of ASAP1 resulted in accelerated chondrogenic differentiation of mesenchymal cells in vitro, but suppressed osteo- and adipogenic differentiation. Mechanistically, we found that FAK/Src and PI3K/AKT signaling is compromised in Asap1GT/GT MEFs, leading to impaired adipogenic differentiation. Dysregulated FAK/Src and PI3K/AKT signaling is also associated with attenuated osteogenic differentiation. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal progenitor cells

    Sex bias in autism spectrum disorder in neurofibromatosis type 1

    Get PDF
    BACKGROUND: Despite extensive literature, little is known about the mechanisms underlying sex bias in autism spectrum disorder (ASD). This study investigates the sex differences in ASD associated with neurofibromatosis type 1, a single-gene model of syndromic autism. METHODS: We analysed data from n = 194 children aged 4–16 years with neurofibromatosis type 1. Sex differences were evaluated across the Autism Diagnostic Interview-Revised (ADI-R), Autism Diagnostic Observation Schedule (ADOS), verbal IQ, Social Responsiveness Scale (SRS) and Conners questionnaires. RESULTS: There was 2.68:1 male:female ratio in children meeting ASD criteria on the deep phenotyping measures. On symptom profile, males with neurofibromatosis type 1 (NF1) + ASD were more impaired on reciprocal social interaction and communication domains of the ADI-R but we found no differences on the restricted, repetitive behaviours (RRBs) domain of the ADI-R and no differences on the social on the ADOS. NF1 ASD males and females were comparable on verbal IQ, and the inattention/hyperactivity domains of the Conners questionnaire. CONCLUSIONS: There is a significant male bias in the prevalence of ASD in NF1. The phenotypic profile of NF1 + ASD cases includes greater social communication impairment in males. We discuss the implications of our findings and the rationale for using NF1 as a model for investigating sex bias in idiopathic ASD

    CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models

    Get PDF
    CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice

    How Active is Your Fund Manager? A New Measure That Predicts Performance

    Get PDF
    Abstract We introduce a new measure of active portfolio management, Active Share, which represents the share of portfolio holdings that di¤er from the benchmark index holdings. We compute Active Share for domestic equity mutual funds from 1980 to 2003. We relate Active Share to fund characteristics such as size, expenses, and turnover in the cross-section, and we also examine its evolution over time. Active Share predicts fund performance: funds with the highest Active Share signi…cantly outperform their benchmarks, both before and after expenses, and they exhibit strong performance persistence. Non-index funds with the lowest Active Share underperform their benchmarks. JEL classi…cation: G10, G14, G20, G2

    Electronic communication in heterometallated porphyrin oligomers

    No full text
    This thesis presents the synthesis and characterisation of a range of heterometallated porphyrin oligomers and other novel 3D Ï-conjugated porphyrin nanostructures. Subsequently, their physical organic properties were evaluated which revealed some fascinating electronic properties. Chapter 1 summarises some of the work done in the Anderson group on porphyrin nanostructures and reviews the literature regarding heterometallated porphyrin oligomers. In addition it introduces the main concepts and techniques used in the remainder of the thesis. In Chapter 2 the stabilities of a family of four linear porphyrin pentamer complexes are determined by UV-vis-NIR titrations and analysed using chemical double-mutant cycles which reveal that the binding energy of the copper centre to an axial pyridine ligand is â6.2 kJ molâ1. Subsequently, the Zn-Zn-Cu-Zn-Zn pentamer is used in the synthesis of a heterometallated 10-porphyrin nanoring. Chapter 3 will describe the investigation of quantum interference phenomena in a bis-copper six-porphyrin nanoring by using EPR spectroscopy. We show that the exchange coupling between two spin centres is increased by a factor 4.5 in the ring structure with two parallel coupling pathways as compared to an otherwise identical system with just one coupling path. In Chapter 4 the syntheses of three isomers of the bis-copper 6-porphyrin nanoring are described. DFT calculations have indicated potential destructive interference phenomena in one of the isomers which would allow for the formation of a molecular system with behaviour resembling that of a hypothetical molecular interferometer. Chapter 5 reports on the template-directed synthesis of a Ï-conjugated 14-porphyrin nanoball. This bicyclic structure consists of two intersecting nanorings of 6 and 10 porphyrin units. Fluorescence up-conversion spectroscopy experiments demonstrate that electronic excitation delocalises over the whole 3D Ï-system within 0.3 ps if the nanoball is bound to its templates or within 5 ps if the nanoball is empty. In Chapter 6 the synthesis and characterisation of a D4h symmetric analogue of the porphyrin nanoball is described. The structure consists of ten porphyrin units arranged as two perpendicular 6-porphyrin nanorings intersecting at two porphyrins. In the synthesis, a combination of magnesium and zinc porphyrins are used which allows for the introduction of a selective demetallation method crucial for accessing this novel structure.</p

    Electronic communication in heterometallated porphyrin oligomers

    No full text
    This thesis presents the synthesis and characterisation of a range of heterometallated porphyrin oligomers and other novel 3D π-conjugated porphyrin nanostructures. Subsequently, their physical organic properties were evaluated which revealed some fascinating electronic properties. Chapter 1 summarises some of the work done in the Anderson group on porphyrin nanostructures and reviews the literature regarding heterometallated porphyrin oligomers. In addition it introduces the main concepts and techniques used in the remainder of the thesis. In Chapter 2 the stabilities of a family of four linear porphyrin pentamer complexes are determined by UV-vis-NIR titrations and analysed using chemical double-mutant cycles which reveal that the binding energy of the copper centre to an axial pyridine ligand is –6.2 kJ mol–1. Subsequently, the Zn-Zn-Cu-Zn-Zn pentamer is used in the synthesis of a heterometallated 10-porphyrin nanoring. Chapter 3 will describe the investigation of quantum interference phenomena in a bis-copper six-porphyrin nanoring by using EPR spectroscopy. We show that the exchange coupling between two spin centres is increased by a factor 4.5 in the ring structure with two parallel coupling pathways as compared to an otherwise identical system with just one coupling path. In Chapter 4 the syntheses of three isomers of the bis-copper 6-porphyrin nanoring are described. DFT calculations have indicated potential destructive interference phenomena in one of the isomers which would allow for the formation of a molecular system with behaviour resembling that of a hypothetical molecular interferometer. Chapter 5 reports on the template-directed synthesis of a π-conjugated 14-porphyrin nanoball. This bicyclic structure consists of two intersecting nanorings of 6 and 10 porphyrin units. Fluorescence up-conversion spectroscopy experiments demonstrate that electronic excitation delocalises over the whole 3D π-system within 0.3 ps if the nanoball is bound to its templates or within 5 ps if the nanoball is empty. In Chapter 6 the synthesis and characterisation of a D4h symmetric analogue of the porphyrin nanoball is described. The structure consists of ten porphyrin units arranged as two perpendicular 6-porphyrin nanorings intersecting at two porphyrins. In the synthesis, a combination of magnesium and zinc porphyrins are used which allows for the introduction of a selective demetallation method crucial for accessing this novel structure.</p
    corecore