11 research outputs found

    Mild recessive epidermolytic hyperkeratosis associated with a novel keratin 10 donor splice-site mutation in a family of Norfolk terrier dogs

    Full text link
    Background  Epidermolytic hyperkeratosis in humans is caused by dominant-negative mutations in suprabasal epidermal keratins 1 and 10. However, spontaneous keratin mutations have not been confirmed in a species other than human. Objectives  To describe an autosomal recessive, mild, nonpalmar/plantar epidermolytic ichthyosis segregating in an extended pedigree of Norfolk terrier dogs due to a splice-site mutation in the gene encoding keratin 10 (KRT10). Methods  Dogs were evaluated clinically, and skin samples were examined by light and electron microscopy. Genomic DNA samples and cDNA from skin RNA were sequenced and defined a mutation in KRT10. Consequences of the mutation were evaluated by assessing protein expression with immunohistochemistry and Western blotting and gene expression with real-time RT-PCR (reverse transcriptase-polymerase chain reaction). Results  Adult dogs with the disease had generalized, pigmented hyperkeratosis with epidermal fragility. Light microscopic examination defined epidermolysis with hyperkeratosis; ultrastructural changes included a decrease in tonofilaments and abnormal filament aggregation in upper spinous and granular layer keratinocytes. Affected dogs were homozygous for a single base GT→TT change in the consensus donor splice site of intron 5 in KRT10. Keratin 10 protein was not detected with immunoblotting in affected dogs. Heterozygous dogs were normal based on clinical and histological appearance and keratin 10 protein expression. The mutation caused activation of at least three cryptic or alternative splice sites. Use of the cryptic sites resulted in transcripts containing premature termination codons. One transcript could result in shortening of the proximal portion of the 2B domain before the stutter region. Quantitative real-time PCR indicated a significant decrease in KRT10 mRNA levels in affected dogs compared with wild-type dogs. Conclusions  This disease is the first confirmed spontaneous keratin mutation in a nonhuman species and is the first reported recessive form of epidermolytic hyperkeratosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74670/1/j.1365-2133.2005.06735.x.pd

    PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans.

    No full text
    International audienceIchthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family

    Targeting Metalloenzymes for Therapeutic Intervention

    No full text
    Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets
    corecore