115 research outputs found

    The Vietnam-Era Veteran Enters College

    Get PDF
    During the past few years, new kinds of students have been entering our colleges and universities. No longer can the uppermiddle class white male, who moves smoothly from a college preparatory program in high school directly into college, be regarded as the typical student. Among the various groups of nontraditional students that make for greater heterogeneity within the college population are those from racial or ethnic minorities, those from lower socioeconomic backgrounds, those whose academic ability or high school preparation is relatively poor (as judged by conventional criteria) and those who are older than the average undergraduate. One subgroup of this last category consists of those whose college education was delayed or interrupted by military service during the Vietnam era, whether they actually served in Southeast Asia or not. It is generally recognized that such students may benefit from college at least as much as the typical student

    The First Year of College: A Follow-up Normative Report

    Get PDF
    The major purpose of this ongoing research program is to determine how students are affected by the colleges they attend (Astin, Panos, and Creager, 1966). Consequently, subsamples of the original groups of participating students have been periodically followed up. These follow-up surveys consist in part of post-tests on selected items administered previously in the Freshman Information Form and in part of items that cover the student\u27s experiences and achievements at his institution, his aspirations and plans for the future, his perceptions and evaluations of the college environment, and his educational outcomes and academic standing

    National Norms for Entering College Freshmen—Fall 1969

    Get PDF
    This report presents national normative data on the characteristics of students entering colleges as first-time, full-time freshmen in 1969. It is the fourth such annual report developed as part of the Cooperative Institutional Research Program being conducted by the Office of Research of the American Council on Education. The major purpose of this ongoing research program is to determine how students are affected by the colleges they attend (Astin, Panos, and Creager, 1966). As evidenced by the wide response to the earlier normative reports (Astin, Panos, and Creager, 1967a, 1967b; Panos, Astin and Creager, 1967; and Creager, Astin,Boruch, and Bayer, 1968), the information provided has been valuable to those engaged in guidance, counseling, administration, educational research, and manpower studies

    THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) IN THE 2016 NOAA/HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

    Get PDF
    One primary goal of annual Spring Forecasting Experiments (SFEs), which are coorganized by NOAA’s National Severe Storms Laboratory and Storm Prediction Center and conducted in the National Oceanic and Atmospheric Administration’s (NOAA) Hazardous Weather Testbed, is documenting performance characteristics of experimental, convection-allowing modeling systems (CAMs). Since 2007, the number of CAMs (including CAM ensembles) examined in the SFEs has increased dramatically, peaking at six different CAM ensembles in 2015. Meanwhile, major advances have been made in creating, importing, processing, verifying, and developing tools for analyzing and visualizing these large and complex datasets. However, progress toward identifying optimal CAM ensemble configurations has been inhibited because the different CAM systems have been independently designed, making it difficult to attribute differences in performance characteristics. Thus, for the 2016 SFE, a much more coordinated effort among many collaborators was made by agreeing on a set of model specifications (e.g., model version, grid spacing, domain size, and physics) so that the simulations contributed by each collaborator could be combined to form one large, carefully designed ensemble known as the Community Leveraged Unified Ensemble (CLUE). The 2016 CLUE was composed of 65 members contributed by five research institutions and represents an unprecedented effort to enable an evidence-driven decision process to help guide NOAA’s operational modeling efforts. Eight unique experiments were designed within the CLUE framework to examine issues directly relevant to the design of NOAA’s future operational CAM-based ensembles. This article will highlight the CLUE design and present results from one of the experiments examining the impact of single versus multicore CAM ensemble configurations

    THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) IN THE 2016 NOAA/HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

    Get PDF
    One primary goal of annual Spring Forecasting Experiments (SFEs), which are coorganized by NOAA’s National Severe Storms Laboratory and Storm Prediction Center and conducted in the National Oceanic and Atmospheric Administration’s (NOAA) Hazardous Weather Testbed, is documenting performance characteristics of experimental, convection-allowing modeling systems (CAMs). Since 2007, the number of CAMs (including CAM ensembles) examined in the SFEs has increased dramatically, peaking at six different CAM ensembles in 2015. Meanwhile, major advances have been made in creating, importing, processing, verifying, and developing tools for analyzing and visualizing these large and complex datasets. However, progress toward identifying optimal CAM ensemble configurations has been inhibited because the different CAM systems have been independently designed, making it difficult to attribute differences in performance characteristics. Thus, for the 2016 SFE, a much more coordinated effort among many collaborators was made by agreeing on a set of model specifications (e.g., model version, grid spacing, domain size, and physics) so that the simulations contributed by each collaborator could be combined to form one large, carefully designed ensemble known as the Community Leveraged Unified Ensemble (CLUE). The 2016 CLUE was composed of 65 members contributed by five research institutions and represents an unprecedented effort to enable an evidence-driven decision process to help guide NOAA’s operational modeling efforts. Eight unique experiments were designed within the CLUE framework to examine issues directly relevant to the design of NOAA’s future operational CAM-based ensembles. This article will highlight the CLUE design and present results from one of the experiments examining the impact of single versus multicore CAM ensemble configurations

    The breakthrough listen search for intelligent life: a wideband data recorder system for the Robert C. Byrd green bank telescope

    Get PDF
    The Breakthrough Listen Initiative is undertaking a comprehensive search for radio and optical signatures from extraterrestrial civilizations. An integral component of the project is the design and implementation of wide-bandwidth data recorder and signal processing systems. The capabilities of these systems, particularly at radio frequencies, directly determine survey speed; further, given a fixed observing time and spectral coverage, they determine sensitivity as well. Here, we detail the Breakthrough Listen wide-bandwidth data recording system deployed at the 100-m aperture Robert C. Byrd Green Bank Telescope. The system digitizes up to 6 GHz of bandwidth at 8 bits for both polarizations, storing the resultant 24 GB/s of data to disk. This system is among the highest data rate baseband recording systems in use in radio astronomy. A future system expansion will double recording capacity, to achieve a total Nyquist bandwidth of 12 GHz in two polarizations. In this paper, we present details of the system architecture, along with salient configuration and disk-write optimizations used to achieve high-throughput data capture on commodity compute servers and consumer-class hard disk drives

    Advanced Preparation Makes Research in Emergencies and Isolation Care Possible: The Case of Novel Coronavirus Disease (COVID-19)

    Get PDF
    The optimal time to initiate research on emergencies is before they occur. However, timely initiation of high-quality research may launch during an emergency under the right conditions. These include an appropriate context, clarity in scientific aims, preexisting resources, strong operational and research structures that are facile, and good governance. Here, Nebraskan rapid research efforts early during the 2020 coronavirus disease pandemic, while participating in the first use of U.S. federal quarantine in 50 years, are described from these aspects, as the global experience with this severe emerging infection grew apace. The experience has lessons in purpose, structure, function, and performance of research in any emergency, when facing any threat

    AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update

    Get PDF
    "Since the 2006 update of the American Heart Association (AHA)/American College of Cardiology Foundation (ACCF) guidelines on secondary prevention (1), important evidence from clinical trials has emerged that further supports and broadens the merits of intensive risk-reduction therapies for patients with established coronary and other atherosclerotic vascular disease, including peripheral artery disease, atherosclerotic aortic disease, and carotid artery disease. In reviewing this evidence and its clinical impact, the writing group believed it would be more appropriate to expand the title of this guideline to “Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease.” Indeed, the growing body of evidence confirms that in patients with atherosclerotic vascular disease, comprehensive risk factor management reduces risk as assessed by a variety of outcomes, including improved survival, reduced recurrent events, the need for revascularization procedures, and improved quality of life. It is important not only that the healthcare provider implement these recommendations in appropriate patients but also that healthcare systems support this implementation to maximize the benefit to the patient. Compelling evidence-based results from recent clinical trials and revised practice guidelines provide the impetus for this update of the 2006 recommendations with evidence-based results (2–165) (Table 1). Classification of recommendations and level of evidence are expressed in ACCF/AHA format, as detailed in Table 2. Recommendations made herein are largely based on major practice guidelines from the National Institutes of Health and updated ACCF/AHA practice guidelines, as well as on results from recent clinical trials. Thus, the development of the present guideline involved a process of partial adaptation of other guideline statements and reports and supplemental literature searches. The recommendations listed in this document are, whenever possible, evidence based. Writing group members performed these relevant supplemental literature searches with key search phrases including but not limited to tobacco/smoking/smoking cessation; blood pressure control/hypertension; cholesterol/hypercholesterolemia/lipids/lipoproteins/dyslipidemia; physical activity/exercise/exercise training; weight management/overweight/obesity; type 2 diabetes mellitus management; antiplatelet agents/anticoagulants; renin/angiotensin/aldosterone system blockers; β-blockers; influenza vaccination; clinical depression/depression screening; and cardiac/cardiovascular rehabilitation. Additional searches cross-referenced these topics with the subtopics of clinical trials, secondary prevention, atherosclerosis, and coronary/cerebral/peripheral artery disease. These searches were limited to studies, reviews, and other evidence conducted in human subjects and published in English. In addition, the writing group reviewed documents related to the subject matter previously published by the AHA, the ACCF, and the National Institutes of Health.
    • …
    corecore