573 research outputs found
Distributed leadership, trust and online communities
This paper analyses the role of distributed leadership and trust in online communities. The team-based informal ethos of online collaboration requires a different kind of leadership from that in formal positional hierarchies. Such leadership may be more flexible and sophisticated, capable of encompassing ambiguity and rapid change. Online leaders need to be partially invisible, delegating power and distributing tasks. Yet, simultaneously, online communities are facilitated by the high visibility and subtle control of expert leaders. This paradox: that leaders need to be both highly visible and invisible as appropriate, was derived from prior research and tested in the analysis of online community discussions using a pattern-matching process. It is argued that both leader visibility and invisibility are important for the facilitation of trusting collaboration via distributed leadership. Advanced leadership responses to complex situations in online communities foster positive group interaction and decision-making, facilitated through active distribution of specific tasks
Nuclear Spin-Isospin Correlations, Parity Violation, and the Problem
The strong interaction effects of isospin- and spin-dependent nucleon-nucleon
correlations observed in many-body calculations are interpreted in terms of a
one-pion exchange mechanism. Including such effects in computations of nuclear
parity violating effects leads to enhancements of about 10%. A larger effect
arises from the one-boson exchange nature of the parity non-conserving nucleon-
nucleon interaction, which depends on both weak and strong meson-nucleon
coupling constants. Using values of the latter that are constrained by
nucleon-nucleon phase shifts leads to enhancements of parity violation by
factors close to two. Thus much of previously noticed discrepancies between
weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v
Landau Damping and Coherent Structures in Narrow-Banded 1+1 Deep Water Gravity Waves
We study the nonlinear energy transfer around the peak of the spectrum of
surface gravity waves by taking into account nonhomogeneous effects. In the
narrow-banded approximation the kinetic equation resulting from a
nonhomogeneous wave field is a Vlasov-Poisson type equation which includes at
the same time the random version of the Benjamin-Feir instability and the
Landau damping phenomenon. We analytically derive the values of the Phillips'
constant and the enhancement factor for which the
narrow-banded approximation of the JONSWAP spectrum is unstable. By performing
numerical simulations of the nonlinear Schr\"{o}dinger equation we check the
validity of the prediction of the related kinetic equation. We find that the
effect of Landau damping is to suppress the formation of coherent structures.
The problem of predicting freak waves is briefly discussed.Comment: 4 pages, 3 figure
The Magnetic Field of the Solar Corona from Pulsar Observations
We present a novel experiment with the capacity to independently measure both
the electron density and the magnetic field of the solar corona. We achieve
this through measurement of the excess Faraday rotation due to propagation of
the polarised emission from a number of pulsars through the magnetic field of
the solar corona. This method yields independent measures of the integrated
electron density, via dispersion of the pulsed signal and the magnetic field,
via the amount of Faraday rotation. In principle this allows the determination
of the integrated magnetic field through the solar corona along many lines of
sight without any assumptions regarding the electron density distribution. We
present a detection of an increase in the rotation measure of the pulsar
J18012304 of approximately 160 \rad at an elongation of 0.95 from
the centre of the solar disk. This corresponds to a lower limit of the magnetic
field strength along this line of sight of . The lack of
precision in the integrated electron density measurement restricts this result
to a limit, but application of coronal plasma models can further constrain this
to approximately 20mG, along a path passing 2.5 solar radii from the solar
limb. Which is consistent with predictions obtained using extensions to the
Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic
Relativistic Contributions to Deuteron Photodisintegration in the Bethe-Salpeter Formalism
In plane wave one-body approximation the reaction of deuteron
photodisintegration is considered in the framework of the Bethe-Salpeter
formalism for two-nucleon system. Results are obtained for deuteron vertex
function, which is the solution of the homogeneous Bethe-Salpeter equation with
a multi-rank separable interaction kernel, with a given analytical form. A
comparison is presented with predictions of non-relativistic, quasipotential
approaches and the equal time approximation. It is shown that important
contributions come from the boost in the arguments of the initial state vertex
function and the boost on the relative energy in the one-particle propagator
due to recoil.Comment: 29 pages, 6 figure
Melting as a String-Mediated Phase Transition
We present a theory of the melting of elemental solids as a
dislocation-mediated phase transition. We model dislocations near melt as
non-interacting closed strings on a lattice. In this framework we derive simple
expressions for the melting temperature and latent heat of fusion that depend
on the dislocation density at melt. We use experimental data for more than half
the elements in the Periodic Table to determine the dislocation density from
both relations. Melting temperatures yield a dislocation density of (0.61\pm
0.20) b^{-2}, in good agreement with the density obtained from latent heats,
(0.66\pm 0.11) b^{-2}, where b is the length of the smallest
perfect-dislocation Burgers vector. Melting corresponds to the situation where,
on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
- …
