31 research outputs found

    Surface Plasmon Resonance Enhanced Ellipsometry for Biosensing

    Get PDF

    Surface Plasmon Resonance Enhanced Ellipsometry for Biodetection

    Get PDF
    Biosensors enable scientists to learn more about biomolecular interactions, and are often used as detectors to indicate the presence of specific analytes. Currently, many detection methods require what are called labels, molecules that bind to an analyte of interest and can be easily detected. Radioactive isotopes are often used for this purpose, but labels such as these have the potential to interfere with the processes and molecules being studied. This poses a problem for medical screening, as labels may lead to an incorrect diagnosis. Therefore, label-free bio sensing techniques are in demand. Surface Plasmon Resonance Imaging (SPR), is one such method. A phenomenon derived from Maxwell’s Equations, SPR occurs at the interface between a dielectric and a metal thin film (Fig. 1). In the metal surface, electrons are not tied to particular atoms and are free to move throughout the material. This “sea” of free electrons can be modeled as a simple harmonic oscillator. In the presence of a drive force—in this case, the electric field in a light wave—electrons will oscillate. Unless the drive force is very close to the resonance frequency, little energy will be transferred to the oscillator. If the driving force matches the resonant frequency however, total energy transfer and SPR will occur. In other words, when a light beam has the correct wavelength to excite the plasmon, it will be absorbed by the metal. One important property of SPR is that the resonant frequencies can be found in the visible light spectrum. The particular frequency required depends largely on the dielectric constant of the metal used. Most importantly, this constant is sensitive to the refractive index of the metal’s surroundings. Consider a glass-gold interface submerged in water (Fig. 1). This system will oscillate at some frequency. If foreign particles are introduced, they raise the refractive index of the water and redshift the plasmon frequency. Thus, the plasmon surface can “detect” refractive index changes and foreign particles with high levels of sensitivity

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore