384 research outputs found

    Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization

    Get PDF
    Fatty acid amide hydrolase (FAAH) is an integral membrane protein responsible for the hydrolysis of a number of primary and secondary fatty acid amides, including the neuromodulatory compounds anandamide and oleamide. Analysis of FAAH's primary sequence reveals the presence of a single predicted transmembrane domain at the extreme N-terminus of the enzyme. A mutant form of the rat FAAH protein lacking this N-terminal transmembrane domain (DeltaTM-FAAH) was generated and, like wild type FAAH (WT-FAAH), was found to be tightly associated with membranes when expressed in COS-7 cells. Recombinant forms of WT- and DeltaTM-FAAH expressed and purified from Escherichia coli exhibited essentially identical enzymatic properties which were also similar to those of the native enzyme from rat liver. Analysis of the oligomerization states of WT- and DeltaTM-FAAH by chemical cross-linking, sedimentation velocity analytical ultracentrifugation, and size exclusion chromatography indicated that both enzymes were oligomeric when membrane-bound and after solubilization. However, WT-FAAH consistently behaved as a larger oligomer than DeltaTM-FAAH. Additionally, SDS-PAGE analysis of the recombinant proteins identified the presence of SDS-resistant oligomers for WT-FAAH, but not for DeltaTM-FAAH. Self-association through FAAH's transmembrane domain was further demonstrated by a FAAH transmembrane domain-GST fusion protein which formed SDS-resistant dimers and large oligomeric assemblies in solution

    Diacylglycerol lipase beta inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain

    Get PDF
    Background and PurposeInhibition of diacylglycerol lipase (DGL) prevents LPS-induced pro-inflammatory responses in mouse peritoneal macrophages. Thus, the present study tested whether DGL inhibition reverses allodynic responses of mice in the LPS model of inflammatory pain, as well as in neuropathic pain models. Experimental ApproachInitial experiments examined the cellular expression of DGL and inflammatory mediators within the LPS-injected paw pad. DAGL- (-/-) mice or wild-type mice treated with the DGL inhibitor KT109 were assessed in the LPS model of inflammatory pain. Additional studies examined the locus of action for KT109-induced antinociception, its efficacy in chronic constrictive injury (CCI) of sciatic nerve and chemotherapy-induced neuropathic pain (CINP) models. Key ResultsIntraplantar LPS evoked mechanical allodynia that was associated with increased expression of DGL, which was co-localized with increased TNF- and prostaglandins in paws. DAGL- (-/-) mice or KT109-treated wild-type mice displayed reductions in LPS-induced allodynia. Repeated KT109 administration prevented the expression of LPS-induced allodynia, without evidence of tolerance. Intraplantar injection of KT109 into the LPS-treated paw, but not the contralateral paw, reversed the allodynic responses. However, i.c.v. or i.t. administration of KT109 did not alter LPS-induced allodynia. Finally, KT109 also reversed allodynia in the CCI and CINP models and lacked discernible side effects (e.g. gross motor deficits, anxiogenic behaviour or gastric ulcers). Conclusions and ImplicationsThese findings suggest that local inhibition of DGL at the site of inflammation represents a novel avenue to treat pathological pain, with no apparent untoward side effects.United States Department of Health & Human Services - DA009789 - DA017259 - DA032933 - DA033934-01A1 DA035864 - DA038493-01A1National Institutes of Health (NIH) - USANIH-NINDS Center core grant - 5P30NS047463United States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA - P30NS047463NIH National Institute of Neurological Disorders & Stroke (NINDS)United States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA - R01DA032933 - K99DA035864 - P01DA017259 - P01DA009789 - F32DA038493 - R00DA035864 - P30DA033934NIH National Institute on Drug Abuse (NIDA)European Commissio

    Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium

    Get PDF
    A decline in stem cell function impairs tissue regeneration during ageing, but the role of the stem-cell-supporting niche in ageing is not well understood. The small intestine is maintained by actively cycling intestinal stem cells that are regulated by the Paneth cell niche(1,2). Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age owing to defects in both stem cells and their niche. The functional decline was caused by a decrease in stemness-maintaining Wnt signalling due to production of Notum, an extracellular Wnt inhibitor, in aged Paneth cells. Mechanistically, high activity of mammalian target of rapamycin complex 1 (mTORC1) in aged Paneth cells inhibits activity of peroxisome proliferator activated receptor alpha (PPAR-alpha)(3), and lowered PPAR-a activity increased Notum expression. Genetic targeting of Notum or Wnt supplementation restored function of aged intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of aged stem cells and promoted recovery from chemotherapy-induced damage. Our results reveal a role of the stem cell niche in ageing and demonstrate that targeting of Notum can promote regeneration of aged tissues.Peer reviewe

    Radioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions

    Get PDF
    Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope 32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme—an RNA sequence that catalyzes the eponymous reaction. We used the 32P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the 32P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups

    Peripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation

    Get PDF
    FAAH (fatty acid amide hydrolase), primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA). Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/-) mice.FAAH(-/-) mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry). FAAH(-/-) mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN). Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/-) mice. Dysregulated hepatic FAAH(-/-) lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/-) acetyl-CoA (85%, p<0.01) corresponded to similar increases in citrate levels (45%). Altered FAAH(-/-) mitochondrial malate dehydrogenase (MDH2) acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/-) mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/-) aldolase B. Fed FAAH(-/-) alcohol dehydrogenase (ADH) acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/-) mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver's role in fostering the pre-diabetic state, and may reflect part of the mechanism underlying the hepatic effects of endocannabinoids in alcoholic liver disease mouse models

    Comparison of Extensive Protein Fractionation and Repetitive LC-MS/MS Analyses on Depth of Analysis for Complex Proteomes

    Get PDF
    In-depth, reproducible coverage of complex proteomes is challenging because the complexity of tryptic digests subjected to LC-MS/MS analysis frequently exceeds mass spectrometer analytical capacity, which results in undersampling of data. In this study, we used cancer cell lysates to systematically compare the commonly used GeLC-MS/MS (1-D protein + 1-D peptide separation) method using four repetitive injections (2-D/repetitive) with a 3-D method that included solution isoelectric focusing and involved an equal number of LC-MS/MS runs. The 3-D method detected substantially more unique peptides and proteins, including higher numbers of unique peptides from low-abundance proteins, demonstrating that additional fractionation at the protein level is more effective than repetitive analyses at overcoming LC-MS/MS undersampling. Importantly, more than 90 % of the 2-D/repetitive protein identifications were found in the 3-D method data in a direct protein level comparison, and the reproducibility between data sets increased to greater than 96 % when factors such as database redundancy and use of rigid scoring thresholds were considered. Hence, high reproducibility of complex proteomes, such as human cancer cell lysates, readily can be achieved when using multidimensional separation methods with good depth of analysis

    GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7–11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845\u27s effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition

    Epigenetic Regulation of Fatty Acid Amide Hydrolase in Alzheimer Disease

    Get PDF
    OBJECTIVE: Alzheimer disease (AD) is a progressive, degenerative and irreversible neurological disorder with few therapies available. In search for new potential targets, increasing evidence suggests a role for the endocannabinoid system (ECS) in the regulation of neurodegenerative processes. METHODS: We have studied the gene expression status and the epigenetic regulation of ECS components in peripheral blood mononuclear cells (PBMCs) of subjects with late-onset AD (LOAD) and age-matched controls (CT). RESULTS: We found an increase in fatty acid amide hydrolase (faah) gene expression in LOAD subjects (2.30 ± 0.48) when compared to CT (1.00 ± 0.14; *p<0.05) and no changes in the mRNA levels of any other gene of ECS elements. Consistently, we also observed in LOAD subjects an increase in FAAH protein levels (CT: 0.75 ± 0.04; LOAD: 1.11 ± 0.15; *p<0.05) and activity (pmol/min per mg protein CT: 103.80 ± 8.73; LOAD: 125.10 ± 4.00; *p<0.05), as well as a reduction in DNA methylation at faah gene promoter (CT: 55.90 ± 4.60%; LOAD: 41.20 ± 4.90%; *p<0.05). CONCLUSIONS: Present findings suggest the involvement of FAAH in the pathogenesis of AD, highlighting the importance of epigenetic mechanisms in enzyme regulation; they also point to FAAH as a new potential biomarker for AD in easily accessible peripheral cells
    corecore