238 research outputs found

    Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments

    Get PDF
    This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted

    Understanding the potential in vitro modes of action of bis(β‐diketonato) oxovanadium(IV) complexes

    Get PDF
    To understand the potential in vitro modes of action of bis(β-diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase-3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)-based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base-pair binding (AT versus GC)

    Speciation, Luminescence, and Alkaline Fluorescence Quenching of 4-(2-methylbutyl)aminodipicolinic acid (H2MEBADPA)

    Get PDF
    4-(2-Methylbutyl)aminodipicolinic acid (H2MEBADPA) has been synthesized and fully characterized in terms of aqueous phase protonation constants (pKa\u27s) and photophysical measurements. The pKa\u27s were determined by spectrophotometric titrations, utilizing a fully sealed titration system. Photophysical measurements consisted of room temperature fluorescence and frozen solution phosphorescence as well as quantum yield determinations at various pH, which showed that only fully deprotonated MEBADPA2– is appreciably emissive. The fluorescence of MEBADPA2– has been determined to be quenched by hydroxide and methoxide anions, most likely through base-catalyzed excited-state tautomerism or proton transfer. This quenching phenomenon has been quantitatively explored through steady-state and time-resolved fluorescence measurements. Utilizing the determined pKas and quenching constants, the fluorescent intensity of MEBADPA2– has been successfully modeled as a function of pH

    Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus

    Get PDF
    The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a mixture of hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, γ-HCH, δ-HCH) and of potentially toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved

    Cost-Effectiveness Analysis of Diagnostic Options for Pneumocystis Pneumonia (PCP)

    Get PDF
    Diagnosis of Pneumocystis jirovecii pneumonia (PCP) is challenging, particularly in developing countries. Highly sensitive diagnostic methods are costly, while less expensive methods often lack sensitivity or specificity. Cost-effectiveness comparisons of the various diagnostic options have not been presented.We compared cost-effectiveness, as measured by cost per life-years gained and proportion of patients successfully diagnosed and treated, of 33 PCP diagnostic options, involving combinations of specimen collection methods [oral washes, induced and expectorated sputum, and bronchoalveolar lavage (BAL)] and laboratory diagnostic procedures [various staining procedures or polymerase chain reactions (PCR)], or clinical diagnosis with chest x-ray alone. Our analyses were conducted from the perspective of the government payer among ambulatory, HIV-infected patients with symptoms of pneumonia presenting to HIV clinics and hospitals in South Africa. Costing data were obtained from the National Institutes of Communicable Diseases in South Africa. At 50% disease prevalence, diagnostic procedures involving expectorated sputum with any PCR method, or induced sputum with nested or real-time PCR, were all highly cost-effective, successfully treating 77-90% of patients at 2651perlifeyeargained.ProceduresusingBALspecimensweresignificantlymoreexpensivewithoutaddedbenefit,successfullytreating689026-51 per life-year gained. Procedures using BAL specimens were significantly more expensive without added benefit, successfully treating 68-90% of patients at costs of 189-232 per life-year gained. A relatively cost-effective diagnostic procedure that did not require PCR was Toluidine Blue O staining of induced sputum (25perlifeyeargained,successfullytreating6825 per life-year gained, successfully treating 68% of patients). Diagnosis using chest x-rays alone resulted in successful treatment of 77% of patients, though cost-effectiveness was reduced (109 per life-year gained) compared with several molecular diagnostic options.For diagnosis of PCP, use of PCR technologies, when combined with less-invasive patient specimens such as expectorated or induced sputum, represent more cost-effective options than any diagnostic procedure using BAL, or chest x-ray alone

    Synthesis, characterization and antibacterial activity studies of new 2‑pyrral‑L‑amino acid Schif base palladium (II) complexes.

    Get PDF
    Three new 2-pyrral amino acid Schif base palladium (II) complexes were synthesized, characterized and their activity against six bacterial species was investigated. The ligands: Potassium 2-pyrrolidine-L-methioninate (L1), Potassium 2-pyrrolidine-L-histidinate (L2) and Potassium 2-pyrrolidine-L-tryptophanate (L3) were synthesized and reacted with dichloro(1,5- cyclooctadiene)palladium(II) to form new palladium (II) complexes C1, C2 and C3, respectively. 1 NMR, FTIR, UV–Vis,elemental analysis and conductivity measurements were used to characterize the products. The antibacterial activities of the compounds were evaluated against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), methicillin-resistant Staphylococcus aureus (MRSA, ATCC 33591), Staphylococcus epidermidis (S. epidermidis, ATCC 12228) and Streptococcus pyogenes (S. pyogenes, ATCC 19615) and, gram-negative Pseudomonas aeruginosa (P. aeruginosa, ATCC 27853) and Klebsiella pneumoniae (K. pneumoniae, ATCC 13883) using the agar well difusion assay and microtitre plate serial dilution method. The palladium complexes were active against the selected bacteria with the imidazole ring containing complex C2 and indole heterocyclic ring containing complex C3 showing the highest activity
    corecore