102 research outputs found

    Application of HPLC to measure vanadium in environmental, biological and clinical matrices

    Get PDF
    © 2018 Vanadate and vanadium compounds exist in many environmental, biological and clinical matrices, and despite the need only limited progress has been made on the analysis of vanadium compounds. The vanadium coordination chemistry of different oxidation states is known, and the result of the characterization and speciation analysis depends on the subsequent chemistry and the methods of analysis. Many studies have used a range of methods for the characterization and determination of metal ions in a variety of materials. One successful technique is high performance liquid chromatography (HPLC) that has been used mainly for measuring total vanadium level and metal speciation. Some cases have been reported where complexes of different oxidation states of vanadium have been separated by HPLC. Specifically reversed phase (RP) HPLC has frequently been used for the measurement of vanadium. Other HPLC methods such as normal phase, anion-exchange, cation-exchange, size exclusion and other RP-HPLC modes such as, ion-pair and micellar have been used to separate selected vanadium compounds. We will present a review that summarizes and critically analyzes the reported methods for analysis of vanadium salts and vanadium compounds in different sample matrices. We will compare various HPLC methods and modes including sample preparation, chelating reagents, mobile phase and detection methods. The comparison will allow us to identify the best analytical HPLC method and mode for measuring vanadium levels and what information such methods provide with regard to speciation and quantitation of the vanadium compounds

    Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit

    Get PDF
    The polyoxometalate P2W18O626-, the Wells-Dawson cluster, stabilized the ribosome sufficiently for the crystallographers to solve the phase problem and improve the structural resolution. In the following we characterize the interaction of the Wells-Dawson cluster with the ribosome small subunit. There are 14 different P2W18O626- clusters interacting with the ribosome, and the types of interactions range from one simple residue interaction to complex association of multiple sites including backbone interactions with a Wells-Dawson cluster. Although well-documented that bridging oxygen atoms are the main basic sites on other polyoxometalate interaction with most proteins reported, the W=O groups are the main sites of the Wells-Dawson cluster interacting with the ribosome. Furthermore, the peptide chain backbone on the ribosome host constitutes the main sites that associate with the Wells-Dawson cluster. In this work we investigate the potential of one representative pair of closely-located Wells-Dawson clusters being a genuine Double Wells-Dawson cluster. We found that the Double Wells-Dawson structure on the ribosome is geometrically sound and in line with other Double Wells-Dawson clusters previously observed in the solid state and solution. This information suggests that the Double Wells-Dawson structure on the ribosome is real and contribute to characterization of this particular structure of the ribosome

    Biological consequences of Vanadium effects on formation of reactive oxygen species and lipid peroxidation

    Get PDF
    Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.info:eu-repo/semantics/publishedVersio

    Decavanadate Inhibits Mycobacterial Growth More Potently Than Other Oxovanadates

    Get PDF
    51V NMR spectroscopy is used to document, using speciation analysis, that one oxometalate is a more potent growth inhibitor of two Mycobacterial strains than other oxovanadates, thus demonstrating selectivity in its interaction with cells. Historically, oxometalates have had many applications in biological and medical studies, including study of the phase-problem in X-ray crystallography of the ribosome. The effect of different vanadate salts on the growth of Mycobacterium smegmatis (M. smeg) and Mycobacterium tuberculosis (M. tb) was investigated, and speciation was found to be critical for the observed growth inhibition. Specifically, the large orange-colored sodium decavanadate (V10O286-) anion was found to be a stronger inhibitor of growth of two mycobacterial species than the colorless oxovanadate prepared from sodium metavanadate. The vanadium(V) speciation in the growth media and conversion among species under growth conditions was monitored using 51V NMR spectroscopy and speciation calculations. The findings presented in this work is particularly important in considering the many applications of polyoxometalates in biological and medical studies, such as the investigation of the phase-problem in X-ray crystallography for the ribosome. The findings presented in this work investigate the interactions of oxometalates with other biological systems

    Polyoxidovanadates' interactions with proteins: an overview

    Get PDF
    Polyoxidovanadates (POVs, previously named polyoxovanadates) are a subgroup of polyoxidometalates (POMs, previously named polyoxometalates) with interesting pharmacological actions that have been tested as potential antidiabetic, antibacterial, antiprotozoal, antiviral, and anticancer drugs. They contain mainly vanadium and are able to interact with proteins, affecting various biological processes. The most studied POV is the isopolyoxidovanadate decavanadate (V-10), which interacts with proteins and/or enzymes such as tyrosine protein phosphatases, P-type ATPases, RNA triphosphatases, myosin and actin. However, in many POVs-protein systems, the binding sites and/or the residues involved in the interaction are not identified. In the present review, the interactions of POVs, as well as linear trivanadate (V-3), both linear and cyclic tetravanadate (V-4) and two proposed heptavanadate (V-7; which are better described by V-10 molecules), with proteins are described through X-ray crystallographic studies. Interactions with POVs through theoretical and spectroscopic studies of proteins related to muscle contraction, serum, oxidative stress, and diabetes were also discussed. In sum, herein, we describe POVs' interactions with various proteins including acid phosphatase A, receptor tyrosine kinase, ectonucleoside triphosphate diphosphohydrolase (NTPDases), transient receptor potential cation channel (TRPM4), phosphoglucomutases, P-type ATPases, myosin, actin, transferrin, albumin, and glucosidases, among others. The putative POVs' effects on proteins are impacted by the POV' stability and speciation. The modes of POVs' interactions include H-bond, electrostatic, H-bond + electrostatic, van der Waals, and covalent binding. The spectroscopic, X-ray and computational results, the sites and modes of binding are described in detail. (C) 2021 The Authors. Published by Elsevier B.Vinfo:eu-repo/semantics/publishedVersio

    Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores

    Get PDF
    Pyrazinoic acid is the active form of pyrazinamide, a first-line antibiotic used to treat Mycobacterium tuberculosis infections. However, the mechanism of action of pyrazinoic acid remains a subject of debate, and alternatives to pyrazinamide in cases of resistance are not available. The work presented here demonstrates that pyrazinoic acid and known protonophores including salicylic acid, benzoic acid, and carbonyl cyanide m-chlorophenyl hydrazone all exhibit pH-dependent inhibition of mycobacterial growth activity over a physiologically relevant range of pH values. Other anti-tubercular drugs, including rifampin, isoniazid, bedaquiline, and p-aminosalicylic acid, do not exhibit similar pH-dependent growth-inhibitory activities. The growth inhibition curves of pyrazinoic, salicylic, benzoic, and picolinic acids, as well as carbonyl cyanide m-chlorophenyl hydrazone, all fit a quantitative structure–activity relationship (QSAR) derived from acid–base equilibria with R2 values > 0.95. The QSAR model indicates that growth inhibition relies solely on the concentration of the protonated forms of these weak acids (rather than the deprotonated forms). Moreover, pyrazinoic acid, salicylic acid, and carbonyl cyanide m-chlorophenyl hydrazone all caused acidification of the mycobacterial cytoplasm at concentrations that inhibit bacterial growth. Thus, it is concluded that pyrazinoic acid acts as an uncoupler of oxidative phosphorylation and that disruption of proton motive force is the primary mechanism of action of pyrazinoic acid rather than the inhibition of a classic enzyme activity

    Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue

    Get PDF
    Inorg Chem. 2008 Jul 7;47(13):5677-84. doi: 10.1021/ic702405dThe general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase

    Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies

    Get PDF
    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. 1H, 11B, and 19F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim]+ and [BF 4]- in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim]+ and [BF4]- and migration of Cl- within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures. Confining ions: Multinuclear NMR experiments were used to explore two different reverse micelle systems formed by using a cationic and nonionic surfactant with the room-temperature ionic liquid (RTIL) [bmim][BF4] (bmim=1-butyl-3-methylimidazolium) as the polar phase. Microemulsions formed by using a cationic surfactant revealed layering of the RTIL that does not occur in systems formed with the nonionic surfactant (see figure). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Fil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Baruah, Bharat. Kennesaw State University; Estados Unidos. State University of Colorado - Fort Collins; Estados UnidosFil: Gaidamauskas, Ernestas. State University of Colorado - Fort Collins; Estados Unidos. Vilniaus Universitetas; LituaniaFil: Rithner, Christopher D.. State University of Colorado - Fort Collins; Estados UnidosFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Silber, Juana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Crans, Debbie C.. State University of Colorado - Fort Collins; Estados UnidosFil: Levinger, Nancy E.. State University of Colorado - Fort Collins; Estados Unido

    Effects of Metal Compounds with Distinct Physicochemical Properties on Iron Homeostasis and Antibacterial Activity in the Lungs: Chromium and Vanadium

    Get PDF
    In situ reactions of metal ions or their compounds are important mechanisms by which particles alter lung immune responses. The authors hypothesized that major determinants of the immunomodulatory effect of any metal include its redox behavior/properties, oxidation state, and/or solubility, and that the toxicities arising from differences in physicochemical parameters are manifest, in part, via differential shifts in lung iron (Fe) homeostasis. To test the hypotheses, immunomodulatory potentials for both pentavalent vanadium (V(V); as soluble metavanadate or insoluble vanadium pentoxide) and hexavalent chromium (Cr(VI); as soluble sodium chromate or insoluble calcium chromate) were quantified in rats after inhalation (5 h/day for 5 days) of each at 100 mu g metal/m(3). Differences in effects on local bacterial resistance between the two V(V), and between each Cr(VI), agents suggested that solubility might be a determinant of in situ immunotoxicity. For the soluble forms, V(V) had a greater impact on resistance than Cr(VI), indicating that redox behavior/properties was likely also a determinant. The soluble V(V) agent was the strongest immunomodulant. Regarding Fe homeostasis, both V(V) agents had dramatic effects on airway Fe levels. Both also impacted local immune/airway epithelial cell Fe levels in that there were significant increases in production of select cytokines/chemokines whose genes are subject to regulation by HIF-1 (whose intracellular longevity is related to cell Fe status). Our findings contribute to a better understanding of the role that metal compound properties play in respiratory disease pathogenesis and provide a rationale for differing pulmonary immunotoxicities of commonly encountered ambient metal pollutants
    corecore