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1Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY

2Department of Chemistry, Colorado State University, Fort Collins, CO

3Department of Chemistry, University of Texas at Tyler, Tyler, TX

4Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS

5Clinical Research Branch, Human Studies Division, Office of Research and Development, U.S.
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Abstract

In situ reactions of metal ions or their compounds are important mechanisms by which particles

alter lung immune responses. We hypothesized that major determinants of the immunomodulatory

effect of any metal include its redox behavior/properties, oxidation state, and/or solubility, and

that the toxicities arising from differences in physicochemical parameters are manifest, in part, via

differential shifts in lung iron (Fe) homeostasis. To test the hypotheses, immunomodulatory

potentials for both penta-valent vanadium (VV; as soluble metavanadate or insoluble vanadium

pentoxide) and hexavalent chromium (CrVI; as soluble sodium chromate or insoluble calcium

chromate) were quantified in rats after inhalation (5 hr/d for 5 d) of each at 100 μg metal/m3.

Differences in effects on local bacterial resistance between the two VV, and between each CrVI,

agents suggested that solubility might be a determinant of in situ immunotoxicity. For the soluble

forms, VV had a greater impact on resistance than CrVI, indicating that redox behavior/properties

was likely also a determinant. The soluble VV agent was the strongest immunomodulant.

Regarding Fe homeostasis, both VV agents had dramatic effects on airway Fe levels. Both also

impacted local immune/airway epithelial cell Fe levels in there were significant increases in

production of select cytokines/chemokines). Our findings contribute to a better understanding of

the role that metal compound properties play in respiratory disease pathogenesis and provide a

rationale for differing pulmonary immunotoxicities of commonly-encountered ambient metal

pollutants.

*Address correspondence to: Andrew Ghio, CRB, HSD, Human Studies Facility, Campus Box 7315, 104 Mason Farm Road, Chapel
Hill, NC 27599. Telephone: (919) 966-0670; FAX: (919) 966-6271; ghio.andy@epa.gov.
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Introduction

Select metal ions or their compounds in polluted air may be responsible for development of

respiratory diseases (EPA, 2004). Local cell populations in the lung are exposed to many of

these metals that, in turn, can trigger a variety of biological effects involved in disease

pathogenesis. For example, modifications of alveolar macrophage [PAM] or neutrophil

[PMN] properties could lead to impaired immunocompetence and, ultimately, increases in

infectious disease (Cohen et al., 2000; Cohen, 2004). Many in vivo and in vitro studies have

addressed the extent and the means by which individual metals induce these effects

(reviewed in Cohen, 2004, 2005). While those studies showed that dose was a determinant

in the extent of immunomodulation, the potential for effects also depended on the agent

itself. This suggested that inherent physicochemical properties of the metals or their

complexes (i.e., solubility, redox behavior/properties, valency, electrophilicity, structural

geometry, or hydrolytic activity) could determine in vitro/in situ toxicities.

Solubility of a metal agent depends on molecule size, ligand type, charge, and nuclearity.

Historically, most inhalation studies with metals have generally investigated only soluble

compounds. Several studies have reported that solubility can have a dramatic effect on the

biological effect and toxicity of a metal (i.e., Cohen et al., 1997, 1998; Tanaka, 2004).

Similarly, redox behavior and valency are also likely to impact toxicities of metals that can

exist in several oxidation states. Though the fundamental difference between an Mn and an

Mn+1 or Mn−1 valence state is only an electron, effects on properties are profound

(McCleverty and Meyer, 2004). The availability of ligands can also affect which valence

state predominates. Metals change valence (i.e. redox behavior) during shuttling or

unidirectional processes; the latter are abundant in biology as metals have one preferred

valence. The oxidation number (valency) also determines types of coordinating ligands,

solubility, extra-/intracellular reactivity, and means of cell entry.

In defining immunotoxic potentials of any inhaled metal agent, evaluating changes in lung

immune cell functions is essential. For example, changes in phagocytosis, intracellular

killing, reactive oxygen intermediate (ROI)/nitric oxide production, and cytokine/chemokine

formation will impact on the incidence or severity of infections in an exposed host’s lungs.

Still, rather than solely pursuing a traditional approach to define which physicochemical

property of a metal agent affects one or more of these functions, our recent research has also

begun to examine the extent to which an induced altered iron homeostasis (AIH) in the lungs

(which can lead to altered host resistance and immune cell function) is also related to a

metal agent’s properties. During AIH, modifications in iron (Fe3+) transport functions (via

either oxidation/reduction events or competition with Fe for carrier protein binding) lead to

changes in Fe delivery/uptake by immune (and epithelial) cells (see review by Ghio and

Cohen, 2005).
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In the airways and lung cells, iron (as Fe3+) is sequestered primarily in ferritin to limit

generation of free radicals. As Fe in the airways must first be transported across the cell

membrane prior to sequestration in ferritin, functional Fe-carrier proteins, i.e., transferrin

(Tf) and lactoferrin (Lf) are critical (Ward et al., 2005). Like ferritin, both Tf and Lf are

present in lining fluid; however, the Fe-carrying capacity of Lf is limited (compared to Tf)

due to its lower levels (Ghio et al., 1999). There are also alternate means of Fe transport into

lung cells (e.g.. anion exchange proteins, divalent metal transporters, etc.). Should a metal

agent affect Fe transport at any/all of these levels, this could lead to AIH in the lung and,

accordingly, decreased Fe being delivered to local immune cells as well as an increased

presence of free (available) catalytically-active Fe in the airways.

We tested here the hypotheses that metal compounds that differ in redox behaviors and

solubilities (1) induce distinct effects on pulmonary immune responses and (2) cause

concurrent shifts in Fe homeostasis in the lungs that might contribute to changes in

resistance to infection. Among metals routinely found at significant levels in urban

atmospheres (as well as defined occupational settings), vanadium (V) and chromium (Cr)

have been among the most studied for pulmonary\immunotoxicologic effects in vivo and in

vitro. By examining the extent to which physicochemical properties of these metals might

influence toxicities in the lung in general, and in Fe homeostasis in particular, these studies

contribute to understanding the role that compound properties play in respiratory disease

pathogenesis, provided a rationale for differing pulmonary immunotoxicities of commonly-

encountered ambient metal pollutants, and yielded clues that may lead to a better

appreciation for potential reactions of metals in living systems.

Materials and Methods

Experimental Animals

Ten-week-old pathogen-free male F344 rats (≈ 225 g, Charles River, Wilmington, MA)

were used in all exposures. On arrival, rats were quarantined 2 wk and then housed

individually in plastic cages in temperature (20°C)- and humidity (50% RH)-controlled

rooms, and provided Purina Rodent Chow and water ad libitum. Rats underwent routine

clinical screening under veterinary supervision prior to initiation of exposures. All facilities

and experimental protocols were approved by the NYU Medical Committee on Animal Care

and Use.

For each study, rats were exposed to each agent or filtered air for 5 hr/d on five consecutive

days. Twenty-four hr after the final exposure, cohorts of rats in each regimen were either

euthanized to permit assessment of several pre-infection endpoints or infected with bacteria

to subsequently determine any induced shifts in antibacterial functions in the lungs.

Chemical Agents

To analyze effects of soluble vs. an insoluble pentavalent V (VV) agents, sodium meta-

vanadate (NaVO3) and vanadium pentoxide (V2O5) were employed. To analyze effects from

soluble vs. insoluble hexavalent Cr (CrVI) agents, sodium chromate (Na2CrO4) and calcium

chromate (CaCrO4) were used. Solubility values were: 0.70 g/L (in H2O at 25°C; NTP,
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2002) for V2O5; 211 g/L for NaVO3; 0.11 g/L (in H2O at 25°C; Katz and Salem, 1993) for

CaCrO4; and, 843 g/L (Dean, 1999) for Na2CrO4. All compounds were purchased from

Sigma (St. Louis, MO).

Generation and Characterization of Exposure Atmospheres and Exposure System

Atmospheres of each soluble agent were generated by nebulizing a dilute solution (pH 7.2–

7.4) via a Collison nebulizer (BGI, Waltham, MA) as described previously (Cohen et al.,

2006, 2007). Insoluble Cr particle atmospheres were similarly generated using CaCrO4

bought in the appropriate size; insoluble V2O5 atmospheres were generated via a Wright

dust feeder. As V2O5 was not placed in water to facilitate nebulization, the majority of

material reaching each rat’s nose was V2O5 and not a mixture of V2O5 and associated

vanadates (data not shown).

Each aerosol was mixed with filtered air and directly introduced into the radial, flow-past

design nose-only exposure system. Because of the design, all particles reaching the nose of

rats only differed in parent chemical composition and not in any overt way due to size,

moisture content, or agglomeration. Target concentration was 100 μg metal/m3; if needed,

subsequent exposures atmospheres down to 0.001 μg/m3 would to be employed. This range

encompassed metal levels representative of those measured in urban air (Cohen et al., 2007;

Doherty et al., 2007; Prophete et al., 2006). Aerodynamic size distribution of each aerosol

was confirmed via 8-stage multiple orifice impactors (MSP, St. Paul, MN) after exposure

(due to flow requirements). Mass concentration was assessed during exposure from particles

collected on 47 mm filters (Type FG, 0.2 μm pore, Millipore, Bedford, MA). Rats were

housed in plastic restraint tubes during each exposure; earlier work has shown the rats do not

undergo undue stress under these conditions. Delivery of aerosol to each port was highly

reproducible within and between groups (a 2% CV).

Studies of Pre-Infection Status of BAL Total Iron and Iron-Binding Protein(s) Levels

One day after the final exposure (this timepoint = 24 hr following the final exposure, and

heretofore called Day 0), five rats/regimen were euthanized by pentobarbital (Nembutal; 100

mg/kg, IP) overdose and their lungs processed (without lavaging) for metal analyses;

another five had their lungs lavaged to obtain concentrated BAL and free (immune) cells.

Each of the latter rats had its trachea cannulated and lungs lavaged once with 7 ml warm

(37°C) PBS/instillation (4–5 infusion-recovery exchanges). This first BAL was centrifuged

(400 × g, 15 min, 4°C) and the resulting acellular supernatant was frozen at −70°C for later

use in measures of the products detailed below. The lungs were then lavaged six more times

to maximize recovery of immune cells. These lavages were pooled and centrifuged to

recover cells present. This cell pellet was combined with that of the first BAL preparation,

washed with PBS, and characterized by differential staining with Diff-Quick (Sigma) and

assessed for viability by trypan blue exclusion.

Assessment of Lung Metal Burden

NIEHS Center Analytical Core procedures used earlier (Cohen et al., 2006, 2007) were

applied to determine the amount of each metal in the lungs at Day 0 and at 72 hr post-

infection. Each final isolate was analyzed using inductively coupled plasma optical emission
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spectroscopy (ICPOES-Model Optima 4300-DV; Perkin Elmer, Norwalk, CT). All materials

used were reagent grade. All standards were made up in ultrapure water. Standard curves

consisted of 6-point calibration with a standard blank to assure accurate baselines.

Assessment of BAL Total Iron Burden

Aliquots of BAL recovered on Day 0 (i.e., pre-infection) were analyzed using ICPOES

operating at 238.204 nm. Minimal detectable Fe in this system was less than 1 ppb.

Assessment of BAL Ferritin and Transferrin

BAL recovered on Day 0 (i.e., pre-infection) was analyzed for total ferritin using an ELISA

kit (R&D Systems, Minneapolis, MN). Total Tf levels in BAL samples were determined

using an immunoprecipitin analysis kit (INCSTAR, Stillwater, MN).

Assessment of BAL TNFα, MIP-2, and MCP-1 Levels

BAL recovered on Day 0 (i.e., pre-infection) was analyzed for total tumor necrosis factor

(TNF)-α, macrophage inflammatory protein [MIP]-2, and monocyte chemoattractant protein

[MCP]-1 levels using ELISA kits (R&D Systems). Additional ELISAs were performed to

measure levels of interleukin (IL)-6, -10, and -12 in the BAL aliquots (R&D Systems).

Host Resistance/In Situ Bacterial (Listerial) Clearance After Agent Exposure

Gram-positive Listeria monocytogenes (strain L242/73 Type 4b) was used for assessing

changes in in situ antibacterial responses. Listeria was grown 16 hr in trypticase soy (TS)

broth at 37°C, its concentration was determined spectrophotometrically at 540 nm, and an

aliquot then diluted with saline to the needed concentration for intratracheal instillation (110

μl/rat) under light halothane anesthesia. Extrapolation to predict Listeria concentration is

known to be within 90% of predicted values (Cohen et al., 2002, 2006).

A day after their final exposure, 10 metal- and 5 air-exposed controls rats were infected with

4 × 106 bacteria/rat (LD10 in F344 rats of this age). Six naïve rats were also infected; three

were analyzed immediately to establish baseline bacterial burdens and the rest 72 hr later to

monitor virulence. At 72 hr post-infection, each infected rat was euthanized and its lungs

isolated en bloc; the trachea and extrapulmonary bronchi were removed and the tissue

weighed and processed for estimation of listerial burden (i.e., homogenization and plating of

serial dilutions on TS agar/0.6% yeast extract plates for 24 hr incubation at 37°C). The

remaining homogenate was placed at 4°C for later use in determining lung metal burden at

sacrifice. Differences in total Listeria/lung (vs. control rat lung values) at 72 hr were used as

an index of modulated resistance.

Data Analysis

Effects from each agent on each test endpoint were analyzed by one-way ANOVA (analysis

of variance) with the individual factor being the exposure group (air or metal agent). All

data were tested to assure assumptions of normality and homogeneity of variance were met,

and transformations applied as needed. Data were also screened for outliers using Dixon and
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Grubb’s analyses (Taylor, 1990). Significant effects were also sub-tested using t-tests

corrected for multiple comparisons. Outcomes were considered significant at p < 0.05.

Results

Lung Metal Burdens after Exposures to the Cr or V Compounds

Analyses of filter samples collected over the 5-d exposure period indicated that rats provided

V2O5 received an equivalent amount of VV relative to NaVO3-exposed rats (Table 1). Rats

provided CaCrO4 received slightly more CrVI than those exposed to Na2CrO4. Mass median

aerodynamic diameters [MMAD] of each agent’s particles were consistent during the

studies.

On Days 0 and 3 of infection, rats in each group were analyzed for lung metal burdens. On

Day 0, rats exposed to V2O5 had a 7.0-fold higher lung V content than rats in the NaVO3

group (Figure 1). On Day 3, V2O5-exposed rats had levels 7.6-fold greater than NaVO3-

exposed hosts. Net changes in V levels (reflecting retention over 3 d period) were very

similar between the groups (i.e., average change 52–56%). CaCrO4-Exposed rats had a

higher (96%) lung Cr content on Day 0 than Na2CrO4-treated rats. After 3 d of infection, Cr

levels in the lungs of rats in the CaCrO4 group were still significantly greater (108%) than in

rats that inhaled Na2CrO4. As with the V agents, retention of Cr was similar between the

groups (i.e., 48–52%).

For the air-exposed control rats, average lung V levels never were at/above the minimal

detectable limit of the detection system (i.e., ≈ 1 ppb). In contrast, levels of Cr in the lungs

of these rats were measurable, but quite low, and did not differ between Days 0 and 3;

average Cr levels in these lungs were ≈ 55 ng (± ≈26 [SD]).

BAL Total Iron (Fe) Burden as a Function of the Metal Compound

BAL Fe levels were assessed on Day 0 to determine compound-related effects on airway Fe

content at time of infection. Studies on Day 3 were not done due to potential effects from the

bacteria itself. Among Day 0 rats, exposure to either VV agent caused significant increases

in BAL Fe levels (Figure 2); NaVO3 and V2O5 led to, respectively, 82 and 72% higher

values than in air controls. While the soluble CrVI agent also had a significant effect on BAL

Fe levels (36% rise), the effect from its insoluble counterpart did not (31% rise, p = 0.07).

Comparisons between the soluble agents indicated that the VV effect was significantly

greater (33%) than that of CrVI. The effect from insoluble VV was also significantly greater

(31%) than that from insoluble CrVI.

BAL Ferritin and Transferrin Levels as Function of the Metal Compound

To assess any compound-related differences in the pre-infection airway presence of the Fe-

related proteins transferrin (Tf) and ferritin, levels of each were assessed in the BAL from

rats on Day 0. Each insoluble VV and CrVI agent caused significant increases in Tf levels

(47 and 53%, respectively) compared to those in control rats (Figure 3); neither soluble form

induced significant increases. Comparisons between the soluble agents indicated the VV-

induced level was significantly greater (119%) than that from CrVI. The level of Tf after
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insoluble VV was not different from insoluble CrVI. Thus, with respect to effects upon lung

Tf, the role of solubility was found to be significant for these two metals.

Effects of the metal agents on BAL ferritin levels trended somewhat differently, i.e., with

the CrVI agents, there were consistent (albeit not significant) decrements relative to control

rat values (Figure 3). In contrast, NaVO3 and V2O5 caused significant respective 133 and

75%, increases in the amounts of ferritin present. Analyses of the data among each metal

compound indicated that each VV effect was significantly different from that due to its

corresponding CrVI counterpart. Specifically, values attributable to NaVO3 and V2O5 were

237 and 138% greater than those associated with Na2CrO4 and Na2CrO4, respectively.

BAL TNFα, MIP-2, and MCP-1 Levels as Function of the Metal Compound

To assess any compound-related differences in pre-infection amounts of select cytokines

and/or chemokines critical to antibacterial responses against Listeria, airway levels of

TNFα, MIP-2, MCP-1, IL-6, -10, and -12 were assessed in BAL from rats on Day 0. In

these rats, it was seen that levels of each interleukin were consistently below kit levels of

detection. In contrast, measurable levels of MIP-2 and TNFα were seen in the majority of

rat samples.

In conjunction with their significant effects on airway Fe levels, both NaVO3 and V2O5

exposures caused significant increases in BAL TNFα (4.5- and 5.3-fold, respectively) and

MIP-2 (1.9- and 2.5-fold, respectively) relative to air control levels (Figure 4). The data also

indicate that for VV, the role of solubility with regard to MIP-2 induction was significant.

Unexpectedly, the CrVI exposures led to no change in TNFα and MIP-2 levels. It is

interesting to note that the VV agents were the only ones that induced measurable amounts

of MCP-1 (data not shown).

Pre-Infection Lung Immune Cell Profiles as Function of the Metal Compound

Day 0 BAL immune cell profiles were examined. The results indicated that while each CrVI

agent caused decreases in AM percentages relative to control (and VV counterpart) levels,

only the Na2CrO4-induced reduction was significant (i.e., 88% vs. 94–96%). In all CrVI-

exposed rats, PMN levels were also increased; here, only CaCrO4 yielded values

significantly different from controls (i.e., 1.92% vs. 0.77%). Oddly, though the CaCrO4-

treated rats had the highest PMN levels, their AM levels did not significantly differ from the

controls. In contrast to the CrVI effects, rats exposed to either VV agent had the lowest PMN

levels (i.e., 0.08–0.22%). As a function of solubility, significant differences were only found

to occur between the two CrVI forms.

Lung Listeria Burdens (3-Day Post-Infection) as Function of the Metal Compound

Following the 5 d of exposures and subsequent infection with Listeria, rats in each group

were assessed for bacterial burdens at 72 hr post-infection. All data were then compared to

burdens in the lungs of air-exposed infected rats to determine if a particular metal compound

induced significant immunomodulation. In no cases were significant differences in mortality

over the 72 hr period or in body weight due to pre-infection regimen detected between the

air- or rats treated with metal compounds.

Cohen et al. Page 7

Inhal Toxicol. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



While exposures to either VV agent caused no significant effects on Listeria burdens in the

first 48 hr post-infection (Cohen et al., 2006), at 72 hr it became clear that soluble NaVO3

had caused greatly reduced pathogen clearance (Figure 5). These rats had significantly

greater (435%) total lung Listeria burdens than air controls; this percent change was also

significantly different from that due to soluble CrVI. At 10 μg V/m3, the effect was lost.

Exposure to insoluble V2O5 led to a non-significant 24% decrease in Listeria levels; this

outcome significantly differed from that of soluble NaVO3. Corresponding patterns were

apparent when data were analyzed in the context of lung weight at sacrifice (data not

shown). These analyses accounted for changes in lung size reflecting increased mass due to

bacterial presence, edema, immune cell migration, etc.

Neither Na2CrO4 nor CaCrO4 caused any significant effect on bacterial burdens the first 48

hr post-infection (Cohen et al., 2007). However, each did induce significant reductions in

pathogen clearance by 72 hr. Rats that received the insoluble CrVI displayed a significantly

(i.e., 286%) greater total lung burden of Listeria compared to air control counterparts. These

levels were also significantly greater than those in the soluble CrVI-exposed rats that

displayed a 92% increase compared to controls. Neither agent retained its effect at a dose of

10 μg Cr/m3. Again, corresponding patterns were apparent when data were analyzed in the

context of lung weight at sacrifice.

Estimation of Relative Immunomodulatory Potential of Each Metal Compound

Analyses for each rat of the percentage change in bacterial burden at 72 hr (as either total

burden or burden/g lung compared to that in infected control counterparts) in the context of

the amount of Cr or V present in the lungs yielded data that permitted estimates of the

relative immunomodulatory potentials of each agent (Figure 6).

For reasons outlined previously (Cohen et al., 2006, 2007), we found that use of Day 3 lung

Cr or V burdens as a factor in assessing each agent’s relative immunomodulatory potential

was unreliable. Specifically, we arrived at that conclusion because there: (A) appeared to be

a weak negative correlation between lung Cr or V burden on Day 3 and relative change in

Listeria burden, bacterial burden/g lung, or lung weight on Day 3; (B) was a correlation

between the extent of infection and lung weight; and, (C) was an increase in the loss of Cr or

V as the mass of/damage to the lung during the infection-to-resolution process. In contrast,

if the initial burden (i.e., ng V or Cr on Day 0) was used as a predictor for ultimate change in

host resistance to the Listeria challenge, very clear patterns of potential immunomodulation

become apparent.

When the percentage change in bacterial burdens from air control levels were estimated in

the context of pre-infection burdens of each metal, the results clearly showed that soluble

NaVO3 had the greatest effect on resistance of all four compounds tested. Among the

remaining three agents, insoluble CaCrO4 had a greater effect upon resistance (at a per ng

pre-infection Cr burden) than soluble Na2CrO4 as well as a significantly greater effect than

insoluble V2O5. From this data, it seems likely that certain attributes of NaVO3 contribute to

the strong immunotoxic potency of this metal compound (as a potential model for other

soluble VV agents) in the lungs.
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Discussion

We hypothesized that physicochemical properties are likely determinants of the

immunomodulatory potentials of metal agents in the lung and that the extent to which each

metal could induce altered iron homeostasis (AIH) was a factor contributing to altered

responses to bacteria. Using soluble and insoluble forms of vanadium and chromium in their

commonly-encountered oxidation states (i.e., VV and CrVI), we sought to ascertain the

extent to which solubility and redox behavior/properties might govern each agent’s

modulating potential and ability to induce AIH.

Solubility as Determinant for Induction of Immunomodulation in the Lungs

Soluble and insoluble particles are handled differently in the lungs. Here, following

ingestion by local AM, the V2O5 or CaCrO4 particles localize in phagosomes and undergo

slow dissolution to free ions. Thus, rapid diffusion by the particles through epithelia does

not occur, and their clearance relies on mucociliary transport. The soluble VV and CrVI ions,

if not reduced or complexed by lining fluid constituents, can readily enter epithelia/AM via

portals used by anions like phosphate (PO4
3−) or sulfate (SO4

2−). Our retention results

reflect these differences, i.e., rats provided insoluble agents had greater lung metal levels

than rats inhaling soluble forms.

Still, other data here suggest an inconsistent impact of solubility on induction of

immunomodulation. For VV, though V2O5 led to a greater lung V level at time of infection,

NaVO3 had a far greater effect on resistance. These differing impacts on resistance are in

keeping with earlier findings comparing each form’s ability to affect: (1) AM cytokine

formation; (2) lung inflammation; and, (3) AM phagocytic activity (reviewed in Cohen,

2004 and NTP, 2002). With regard to adverse effects on lung immune cell profiles, this

predisposing factor for altered resistance was, unexpectedly, not induced by either VV agent.

For CrVI, CaCrO4 exposure led to both a greater lung Cr level and change in resistance than

Na2CrO4. However, when data were normalized to reflect Day 0 lung Cr burdens, solubility-

associated differences were no longer evident. These observations run counter to earlier

findings that showed that, for CrVI, solubility influences the ability to induce inflammation

and affect AM functions (Cohen et al., 1998), including several critical to host resistance to

Listeria.

Why V2O5 did not affect resistance while CaCrO4 did is curious. Both could induce

reductions in AM phagocytic function (i.e., as phagosomes “fill” with particles, the cell

cannot readily ingest Listeria) and killing, (i.e., after ions are liberated from particles, the

cell can ingest but not eliminate the bacteria). The lower effect of V2O5 is even more odd

given that it is more soluble in water than CaCrO4 and should be “easier” to solubilize to its

toxic ion in AM. We surmise that since our V2O5 particles: had an MMAD ≈3X that of

CaCrO4; yielded lung metal levels about half that from CaCrO4; and, induced reductions in

Listeria levels, the AM in V2O5-exposed rats likely ingested fewer particles than AM in

CaCrO4-exposed rats. With fewer particles engulfed, more V2O5 remained in the airways

(and was lethal to the Listeria as it can create acidic microenvirons [Bell et al., 2004]) and

less VV overall was able to enter AM and eventually exert toxicity.
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Due to this lack of a consistent pattern among the CrVI and VV agents (and with soluble/

insoluble lead (Pb) and zinc (Zn) agents as well [data not shown]), it is not possible to firmly

declare (for now) solubility as a determinant of in situ immunotoxic potential for all airborne

metals.

Redox Behavior as Determinant for Induction of Immunomodulation in the Lungs

In cells, VV ions are recycled (shuttled) through cellular redox processes while CrVI ions are

unidirectionally-reduced. On entering cells, soluble VV ions interact with reductants (e.g.,

NAD(P)H and GSH [glutathione]; Baran, 2000; Crans et al., 2004) and are reduced to VIV

ions; these, in turn, can interact with O2/ROI (Stern et al., 1992) and revert to VV. Apart

from redox-related damage from those events, VV and VIV ions both affect key enzymes and

signal transduction pathways critical to cell function and viability (Chien et al., 2006;

Prophete et al., 2006; Riley et al., 2003; Wang et al., 2003). Fortunately, the detrimental

cycling process can be broken via (1) VIV stabilization by PO4
3−-based ligands that prevent

reduction of O2/ROI (Nechay et al., 1986) and/or (2) loss of VV from the cell (Barac-Nieto

et al., 2002; Elmariah and Gunn, 2003). In contrast to the VV, soluble CrVI ions that enter

cells are quickly reduced (Standeven and Wetterhan, 1989). As the CrV and CrIV species

formed are unstable intracellularly (Lay and Lavina, 2004; Nag and Bose, 1985), the ion

ultimately present is CrIII. Nevertheless, though unidirectionally-reduced, CrVI ions are

strong oxidants and can undergo redox/ligand displacement reactions with GSH, NAD(P)H,

or other HS-bearing entities.

As both VV and CrVI could induce these effects in AM, it is fair to compare the oxidative

potential or redox process displayed by each metal is a better determinant of

immunomodulatory potential. Electrochemical potentials clearly predict that CrVI is the

stronger oxidant. Under physiological conditions, the electrochemical potential of CrVI (as it

reduces to CrIII) is (E∘(CrVI/CrIII) = +1.41V; E∘(CrV/CrIV) = +1.34 V; E∘(CrIV/CrIII) = +2.10

V; Katz and Salem, 1993); in contrast, the potential of VV (depending on parent compound)

is E∘(VV/VIV) = +1.02 to +1.31 V; Rehder, 1992). However, while VV is a ‘good’ oxidant,

unlike with CrVI, there is an added risk of toxicity due to reducing reactions as VIV re-

converts to VV. This “double impact” from redox shuttling may be amplified by self-

perpetuating ROS← →VV reactions (unless cycling is broken). These dual potential redox

effects of VV suggest that - at equal burdens of each metal - VV would likely present a

greater risk to an AM, and therefore be more immunomodulatory, than CrVI. Indeed, our

data indicates this is so.

When our results with VV and CrVI are analyzed in the context of other studies showing that

neither soluble PbII (“weakly-changeable” behavior) nor ZnII (“redox inert”) affected

resistance to Listeria (data not shown), we can conclude that redox behavior/properties is

likely to be a critical determinant of in situ immunotoxicity for soluble forms of metals that

may be in the air.

Ability to Induce AIH as Determinant for Induction of Immunomodulation in the Lungs

Metal ions or their compounds can disrupt normal Fe homeostasis in the lungs and its cells

via several pathways. Some can compete with endogenous FeIII ions for reducing
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equivalents prior to cell uptake or binding to/transport by transferrin (Tf) or lactoferrin (Lf).

Some may also compete with FeII for: alternate import pathways (e.g., DMT1); storage in

ferritin; export pathways (e.g., ferroportin); and, oxidation (i.e., ferroxidation). Such

disruptions could lead to accumulation of Fe in cells to metabolically unsound levels or

significant decreases in Fe delivery to the cells. In AM, while the former would lead to

increased oxidative stress, cell signaling/transcription factor activation, and mediator

release, the latter would yield Fe-deficient AM less able to generate ROI.

Both Cr and V agents here caused increased airway Fe levels, with the effect of the VV

compounds being far greater than the CrVI agents. Analyses of Tf, a protein released (above

basal levels) into airways in response to elevated Fe levels, showed that soluble and

insoluble VV - but only insoluble CrVI - caused significant increases in this parameter.

Conversely, airway ferritin levels were only significantly increased by VV. Similar selective

effects by VV were also noted regarding levels of TNFα, MIP-2, and MCP-1, whose genes

bear a hypoxia-responsive element (HRE).

Effects of both VV agents on each Fe-based parameter analyzed were anticipated. Among

defined metal immunomodulants, vanadium (Harrington, 1992; Mazurier, et al., 1983;

Nagaoka et al., 2004) is known to compete with Fe for binding with, or to displace Fe from,

Tf (and Lf) in vivo or in vitro. Our recent in vitro studies clearly demonstrated this

competition and subsequent reductions in Fe delivery to AM (Doherty et al., 2007; Prophete

et al., 2006). Chromium also is known to bind with Tf in vivo and in vitro (Ani and

Moshtaghie, 1992; Moshtaghie et al., 1992). However, it is unclear if it is CrVI that is

binding; studies have indicated that, in fact, it is CrIII that is actually bound (Clodfelder et

al., 2001; Harris, 1967). Thus, for induction of AIH to have occurred here via reduced Tf

transport activity, the entrained CrVI would have to have first undergone reduction in the

airways. As the airways would then have had increased levels of CrIII ions (that do not

readily enter cells), observed effects on AM function would likely not be so much

attributable to CrVI but, instead, to an Fe insufficiency. Lastly, a basic critical difference in

the abilities of V and Cr to potentially modify Tf function provides a basis to explain why

AIH would more likely to evolve after a VV (rather than CrVI) exposure. Harris (1967)

showed that with Tf, most FeIII binds at “Site A” (≈90% selectivity) and then at “Site B”

only during states of Fe excess. Harris also showed that when V or Cr was present, FeIII and

V - individually - preferentially bind at Site A, while Cr does so at Site B. Thus, while V and

Cr each could bind to Tf, V would have a more detrimental impact as it blocks FeIII binding

at its preferential site.

While both VV and CrVI might “eventually” bind with Tf and so alter Fe delivery, it was still

important to verify if AM Fe levels were affected here. Direct analysis by ICPOES was

found to be technically difficult; therefore, product levels of HRE-bearing genes were

analyzed to indirectly verify any Fe-deficiencies. We recognize that there are many factors

that could lead to the transcription of pro-inflammatory mediators (such as TNFα, MIP-2,

and MCP-1) by these (and other types of lung) cells. However, in the context of AIH, any

agent-induced Fe insufficiency would lead to an increased presence of HIF-1 (hypoxia-

inducible factor) in the cells that, in turn, would lead to the activation of multiple HRE-
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containing genes, including several coding for these three/other key pro-inflammatory

cytokines/chemokines (Jeong et al., 2003, 2005; Lee et al., 2004).

That the VV agents affected levels of TNFα, MIP-2, and MCP-1 was in keeping with other

observations here regarding induced AIH. In contrast, a lack of any increase in TNFα/MIP-2

in the CrVI-exposed rats was puzzling. As a similar confounding outcome was noted in

earlier studies of hosts that had inhaled Pb (Cohen et al., 1994), concern arose that a “lack”

of increase in BAL levels of both proteins may have been attributable to our use of ELISA

kits. In a follow-on study performed using TNFα standards incubated with CrVI (250 μM

Na2CrO4; a level equal to that of entrained CrVI expected in lining fluid after single

exposure), incubations of even 5 min led to 25–30% reductions in expected absorbance

values. We thus conclude that the lack of any measurable change in TNFα/MIP-2 levels in

CrVI-exposed rats’ BAL was likely a result of the entrained CrVI reacting with the proteins

present during the exposure and/or with these/newly-secreted entities after an exposure was

complete, rather than a failure of the CrVI agents to induce effects predicted to evolve from

the AM receiving less Fe.

Despite the increased levels of these three assayed pro-inflammatory mediators following

the V agent exposures, an obvious PMN influx was not evident in those exposed rats. This

may reflect the time of sampling or uncertainties in dose-response relationships. Further, as

our own studies have shown that leukocyte responsiveness to response modifiers (both

protein and non-protein) following in vivo or in vitro exposures to V are reduced through

effects on receptors and/or post-modifier binding/processing steps (Cohen et al., 1996,

1999), it is also plausible that PMN in the lungs of these rats may simply not have been able

to respond to the increased presence of the chemokines. Lastly, Wang et al. (2002) showed

that PMN in the lungs of V-exposed hosts undergo significant apoptosis within 24 hr of any

given exposure; as our sampling occurred 24 hr after the final exposure, a “lack” of

increased PMN numbers in the presence of increased chemokine levels could just be a

reflection of this apoptotic process having occurred during that interim period.

After analyzing the data regarding effects of each agent on Fe transport-/status-associated

endpoints in the context of concurrent changes in resistance to Listeria, and accounting for

the earlier-noted Listeria survival with V2O5 “problem”, we conclude that an ability to

induce AIH in the lungs is a determinant of in situ immunotoxic potential for an airborne

metal (compound).

Conclusion

Our studies show that the ability of an inhaled metal agent to induce AIH and its redox

behavior/properties (but not electrochemical potential, per se) are likely critical determinants

of its capability to induce immunomodulation in the lungs. We are unable to firmly conclude

that solubility is also a critical determinant at this time. These assignations are made while

viewing each characteristic as a stand-alone entity; we are mindful that it is important to

recognize that no metal agent evinces only one characteristic at a time. Our ongoing studies

will further refine the role that each property/ability plays in determining the in situ potential

for immunomodulation by these four agents, and determine if our findings here are
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applicable to other Cr or V agents, as well as to other metals (in varying forms) that might

be inhaled as constituents of air pollution.
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Figure 1.
Lung V and Cr burdens at Day 0 (i.e., pre-infection) and Day 3 of infection with Listeria.

Each bar represents the average burden (ng V or ng Cr; ± SE) in the lungs of n = 5 (Day 0;

solid bar) or n = 8–10 (Day 3; hatched bar) rats/exposure (5 hr/d, for 5 consecutive days)

to insoluble V2O5, soluble NaVO3, insoluble CaCrO4, or soluble Na2CrO4. *Value

significantly (p < 0.05) different from that in rats analyzed on Day 0.
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Figure 2.
Pre-infection levels of lavagable Fe in lungs of rats that had been exposed for 5 hr/d for 5

days to soluble or insoluble forms of V or Cr. Each value reported is the mean (± SE)

obtained from 5–10 rats/subset. *Level significantly differs from air control value (p-value

indicated above each bar); ‡level significantly differs from solubility-matched Cr

counterpart at p < 0.05.
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Figure 3.
Pre-infection levels of lavagable transferrin (solid bar/specific agent set) and ferritin

(hatched bar/specific agent set) in lungs of rats that had been exposed for 5 hr/d for 5 days to

soluble or insoluble forms of V or Cr. Each value reported is the mean (± SE) obtained from

5–10 rats/subset. At p < 0.05, *level significantly differs from air control value; ‡level

significantly differs from solubility-matched Cr counterpart; #level significantly differs from

soluble counterpart.
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Figure 4.
Pre-infection levels of MIP-2 (solid bar/specific agent set) and TNF-α (hatched bar/specific

agent set) in lungs of rats that had been exposed for 5 hr/d for 5 days to soluble or insoluble

forms of V or Cr. Each value reported is the mean (± SE) obtained from 5–10 rats/subset. At

p < 0.05, *level significantly differs from air control levels; ‡level significantly differs from

soluble counterpart; #level significantly differs from solubility-matched Cr counterpart
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Figure 5.
Relative change (at 72 hr) from air control rat bacterial levels in lungs of rats that had been

exposed 5 hr/d for 5 days to soluble or insoluble forms of V or Cr prior to infection. Each

bar represents mean (± SE) of 10 rats/subset. At p < 0.05: *percent (%) change from air

control levels was significant; ‡% change significantly differs from opposing solubility

counterpart (within metal set); #% change significantly differs from solubility-matched V

counterpart.
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Figure 6.
Relative difference in Listeria burden in lungs of rats at Day 3 post-infection as a function of

Day 0 lung metal burdens. Each bar represents mean (± SE) (from n = 10 Day 3 rats/agent)

average percentage difference in Listeria levels compared to respective values in air

controls, in the context of ng V (or Cr) in lungs at Day 0. ‡Value significantly (p < 0.05)

different from that in rats in V counterparts matched for relative solubilities; *value

significantly different from that of opposing solubility counterpart (within metal set).
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Table 1

Exposure Parameters from Each Study.

Exposure Regimen a Actual Exposure Level b MMAD

Sodium Vanadate (NaVO3) 110.14 ± 3.59 0.21 μm (σg =2.1)

Vanadium Pentoxide (V2O5) 132.62 ± 37.19 0.74 μm (σg =2.8)

Sodium Chromate (Na2CrO4) 110.08 ± 3.52 0.34 μm (σg =1.7)

Calcium Chromate (CaCrO4) 118.57 ± 2.88 0.27 μm (σg =2.7)

a
Values in terms of μg parent metal/m3 over the entire 5-d exposure period (mean ± SE).

b
Mass median aerodynamic diameters.
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