7,310 research outputs found

    Mechanical Properties Of Sediment Determine Burrowing Success And Influence Distribution Of Two Lugworm Species

    Get PDF
    We apply new perspectives on how organisms burrow by examining the association of in situ variation in sediment mechanical properties with burrowing ability and species distribution of two sympatric lugworms, Abarenicola pacifica and Abarenicola claparedi. We quantified the sediment\u27s resistance to penetration and its grain size distribution at sites inhabited by each species. Abarenicola pacifica individuals were found in significantly harder to penetrate, more heterogeneous sediments. We compared worm burrowing ability using reciprocal transplant experiments. Worms from firmer sediments, A. pacifica, were able to make successful steep burrows in sediments characteristic of either species. In contrast, A. claparedi individuals often failed to complete successful burrows in the firmer A. pacifica sediment. To examine how morphological differences could explain these patterns, we compared body wall musculature and measured how well individuals support their own bodies when draped over a cantilever. Lugworms from the firmer sediment had thicker body wall musculature and held their bodies more rigidly than did worms from softer sediments. Additionally, we observed subtle differences in the papillae on the proboscises\u27 surfaces, which could affect worm–sediment interactions, but we found no differences in the chaetae of the two species. Abarenicola claparedi produced more mucus, which could be important in shoring up burrow walls in their shifting, sandy habitat. This study presents the first example of using field-based experiments to determine how sediment mechanical properties and worm burrowing ability could act to determine organismal distribution. Our findings have broader ecological implications because of the role of lugworms as ecosystem engineers

    Quantum Field Theory of Open Spin Networks and New Spin Foam Models

    Get PDF
    We describe how a spin-foam state sum model can be reformulated as a quantum field theory of spin networks, such that the Feynman diagrams of that field theory are the spin-foam amplitudes. In the case of open spin networks, we obtain a new type of state-sum models, which we call the matter spin foam models. In this type of state-sum models, one labels both the faces and the edges of the dual two-complex for a manifold triangulation with the simple objects from a tensor category. In the case of Lie groups, such a model corresponds to a quantization of a theory whose fields are the principal bundle connection and the sections of the associated vector bundles. We briefly discuss the relevance of the matter spin foam models for quantum gravity and for topological quantum field theories.Comment: 13 pages, based on the talk given at the X-th Oporto Meeting on Geometry, Physics and Topology, Porto, September 20-24, 200

    Holography in the EPRL Model

    Full text link
    In this research announcement, we propose a new interpretation of the EPR quantization of the BC model using a functor we call the time functor, which is the first example of a CLa-ren functor. Under the hypothesis that the universe is in the Kodama state, we construct a holographic version of the model. Generalisations to other CLa-ren functors and connections to model category theory are considered.Comment: research announcement. Latex fil

    Flight investigation of the VFR and IFR landing approach characteristics and terminal area airspace requirements for a light STOL airplane

    Get PDF
    A flight research program was conducted to determine the terminal area instrument flight capabilities of a light STOL airplane. Simulated (hooded) instrument landing approaches were made using steep single-segment and two-segment glide slopes. A brief investigation was also made of the visual flight terminal area capabilities of the aircraft. The results indicated that the airplane could be flown on a 7 deg glide-slope ILS-type approach in still air with an adequate 3 deg margin for downward correction

    Defect Specific Penetrants

    Get PDF
    The failure to detect small through-the-thickness flaws in non-metallic coatings on metallic substrates can lead to corrosion rates several orders of magnitude greater than those of the bare metal. Therefore, the detection of such defects has high priority even though presently used inspection procedures are both expensive and difficult to perform. It has recently been shown that it is possible to make a penetrant that can detect those through-thickness flaws to the exclusion of all others. These penetrants are made by adding chelating agents to a carrier fluid such as an alcohol. The chelating agent becomes fluorescent when it contacts a metal substrate. Initial work utilized the chelating agent 8-hydroxy quinoline, and is sensitive to most metals. Current work is concentrating on chelating agents that are specific to certain metals. Thus, cracks in chromium coatings or steel can be detected if they penetrate on the steel base. Work on organic and biological agents show promise

    Pilot study and evaluation of a SMMR-derived sea ice data base

    Get PDF
    Data derived from the Nimbus 7 scanning multichannel microwave radiometer (SMMR) are discussed and the types of problems users have with satellite data are documented. The development of software for assessing the SMMR data is mentioned. Two case studies were conducted to verify the SMMR-derived sea ice concentrations and multi-year ice fractions. The results of a survey of potential users of SMMR data are presented, along with SMMR-derived sea ice concentration and multiyear ice fraction maps. The interaction of the Arctic atmosphere with the ice was studied using the Nimbus 7 SMMR. In addition, the characteristics of ice in the Arctic ocean were determined from SMMR data

    Micro-Switches with Sputtered Au, AuPd, Au-on-AuPt, and AuPtCu Alloy Electric Contacts

    Get PDF
    This work is the first to report on a new analytic model for predicting micro-contact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bi-metallic (i.e. gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6%)Pt)), binary alloy (i.e. Au-palladium (Pd), (Au-(2%)Pd)), and tertiary alloy (i.e. Au-Pt-copper (Cu), (Au-(5%)Pt-(0.5%)Cu)) electric contacts. The micro-switches with bi-metallic and binary alloy contacts resulted in contact resistance between 1-2 /spl Omega/ and, when compared to micro-switches with sputtered Au electric contacts, exhibited a 3.3 and 2.6 times increase in switching lifetime, respectively. The tertiary alloy exhibited a 6.5 times increase in switch lifetime with contact resistance ranging from 0.2-1.8 /spl Omega/
    • …
    corecore