2,838 research outputs found

    An overview of Viscosity Solutions of Path-Dependent PDEs

    Full text link
    This paper provides an overview of the recently developed notion of viscosity solutions of path-dependent partial di erential equations. We start by a quick review of the Crandall- Ishii notion of viscosity solutions, so as to motivate the relevance of our de nition in the path-dependent case. We focus on the wellposedness theory of such equations. In partic- ular, we provide a simple presentation of the current existence and uniqueness arguments in the semilinear case. We also review the stability property of this notion of solutions, in- cluding the adaptation of the Barles-Souganidis monotonic scheme approximation method. Our results rely crucially on the theory of optimal stopping under nonlinear expectation. In the dominated case, we provide a self-contained presentation of all required results. The fully nonlinear case is more involved and is addressed in [12]

    A new representation for non--local operators and path integrals

    Full text link
    We derive an alternative representation for the relativistic non--local kinetic energy operator and we apply it to solve the relativistic Salpeter equation using the variational sinc collocation method. Our representation is analytical and does not depend on an expansion in terms of local operators. We have used the relativistic harmonic oscillator problem to test our formula and we have found that arbitrarily precise results are obtained, simply increasing the number of grid points. More difficult problems have also been considered, observing in all cases the convergence of the numerical results. Using these results we have also derived a new representation for the quantum mechanical Green's function and for the corresponding path integral. We have tested this representation for a free particle in a box, recovering the exact result after taking the proper limits, and we have also found that the application of the Feynman--Kac formula to our Green's function yields the correct ground state energy. Our path integral representation allows to treat hamiltonians containing non--local operators and it could provide to the community a new tool to deal with such class of problems.Comment: 9 pages ; 1 figure ; refs added ; title modifie

    Impacts of Recent Mill Closures and Potential Biofuels Development on Maine’s Forest Products Industry

    Get PDF
    The economic contributions of a sector (i.e., employment, output, value added) are a measure of how money from that sector moves about a regional economy. Using 2014 estimates of economic contributions from the forest product industry in Maine, we estimate the 2016 contribution by considering the impacts from several recent mill closures (five pulp/paper, two bioelectric). The loss of these mills, particularly paper mills, reduces the economic contributions of the forest products industry relative to the state economy and distorts markets for low-value wood. We also explore a prospective opportunity to revive low-value wood markets by modeling the economic impacts from a hypothetical colocated biorefinery, where wood chips are turned into advanced fuels and chemical coproducts. The dollar value of economic impacts from such an investment are small relative to the total industry, but they may prove significant for some rural communities

    Toddler-Inspired Visual Object Learning

    Get PDF
    Real-world learning systems have practical limitations on the quality and quantity of the training datasets that they can collect and consider. How should a system go about choosing a subset of the possible training examples that still allows for learning accurate, generalizable models? To help address this question, we draw inspiration from a highly efficient practical learning system: the human child. Using head-mounted cameras, eye gaze trackers, and a model of foveated vision, we collected first-person (egocentric) images that represents a highly accurate approximation of the "training data" that toddlers' visual systems collect in everyday, naturalistic learning contexts. We used state-of-the-art computer vision learning models (convolutional neural networks) to help characterize the structure of these data, and found that child data produce significantly better object models than egocentric data experienced by adults in exactly the same environment. By using the CNNs as a modeling tool to investigate the properties of the child data that may enable this rapid learning, we found that child data exhibit a unique combination of quality and diversity, with not only many similar large, high-quality object views but also a greater number and diversity of rare views. This novel methodology of analyzing the visual "training data" used by children may not only reveal insights to improve machine learning, but also may suggest new experimental tools to better understand infant learning in developmental psychology

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η1013\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure

    The Cosmological Time Function

    Get PDF
    Let (M,g)(M,g) be a time oriented Lorentzian manifold and dd the Lorentzian distance on MM. The function τ(q):=supp<qd(p,q)\tau(q):=\sup_{p< q} d(p,q) is the cosmological time function of MM, where as usual p<qp< q means that pp is in the causal past of qq. This function is called regular iff τ(q)<\tau(q) < \infty for all qq and also τ0\tau \to 0 along every past inextendible causal curve. If the cosmological time function τ\tau of a space time (M,g)(M,g) is regular it has several pleasant consequences: (1) It forces (M,g)(M,g) to be globally hyperbolic, (2) every point of (M,g)(M,g) can be connected to the initial singularity by a rest curve (i.e., a timelike geodesic ray that maximizes the distance to the singularity), (3) the function τ\tau is a time function in the usual sense, in particular (4) τ\tau is continuous, in fact locally Lipschitz and the second derivatives of τ\tau exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth

    Discussion of Recent Decisions

    Get PDF
    corecore