32 research outputs found

    Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy

    Get PDF
    Correction to: EMBO Mol Med (2015) 7: 1580–1594. DOI 10.15252/emmm.201505323 | Published online 27 November 2015 EMBO Molecular Medicine 2017 vol 9 No12: 1764.Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABA(A) and glycine receptors (GABA(A)Rs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild- type gephyrin leading to a marked decrease in GABA(A)R surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.Peer reviewe

    De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy

    Get PDF
    Background Mutations in the KIAA2022 gene have been reported in male patients with X-linked intellectual disability, and related female carriers were unaffected. Here, we report 14 female patients who carry a heterozygous de novo KIAA2022 mutation and share a phenotype characterised by intellectual disability and epilepsy. Methods Reported females were selected for genetic testing because of substantial developmental problems and/or epilepsy. X-inactivation and expression studies were performed when possible. Results All mutations were predicted to result in a frameshift or premature stop. 12 out of 14 patients had intractable epilepsy with myoclonic and/or absence seizures, and generalised in 11. Thirteen patients had mild to severe intellectual disability. This female phenotype partially overlaps with the reported male phenotype which consists of more severe intellectual disability, microcephaly, growth retardation, facial dysmorphisms and, less frequently, epilepsy. One female patient showed completely skewed X-inactivation, complete absence of RNA expression in blood and a phenotype similar to male patients. In the six other tested patients, X-inactivation was random, confirmed by a non-significant twofold to threefold decrease of RNA expression in blood, consistent with the expected mosaicism between cells expressing mutant or normal KIAA2022 alleles. Conclusions Heterozygous loss of KIAA2022 expression is a cause of intellectual disability in females. Compared with its hemizygous male counterpart, the heterozygous female disease has less severe intellectual disability, but is more often associated with a severe and intractable myoclonic epilepsy

    De novo Variants in Neurodevelopmental Disorders with Epilepsy

    Get PDF
    Neurodevelopmental disorders (NDD) with epilepsy constitute a complex and heterogeneous phenotypic spectrum of largely unclear genetic architecture. We conducted exome-wide enrichment analyses for protein-altering de novo variants (DNV) in 7088 parent-offspring trios with NDD of which 2151 were comorbid with epilepsy. In this cohort, the genetic spectrum of epileptic encephalopathy (EE) and nonspecific NDD with epilepsy were markedly similar. We identified 33 genes significantly enriched for DNV in NDD with epilepsy, of which 27.3 were associated with therapeutic consequences. These 33 DNV-enriched genes were more often associated with synaptic transmission but less with chromatin modification when compared to NDD without epilepsy. On average, only 53 of the DNV-enriched genes were represented on available diagnostic sequencing panels, so our findings should drive significant improvements of genetic testing approaches

    Punctate white matter lesions in full-term infants with neonatal seizures associated with SLC13A5 mutations

    No full text
    INTRODUCTION: Early-onset epileptic encephalopathy caused by biallelic SLC13A5 mutations is characterized by seizure onset in the first days of life, refractory epilepsy and developmental delay. Little detailed information about the brain MRI features is available in these patients. METHODS: Observational study describing the neuro-imaging findings in eight patients (five families) with mutations in the SLC13A5 gene. Seven infants had an MRI in the neonatal period, two had a follow-up MRI at the age of 6 and 18 months and one only at 13 months. One patient had follow-up MRIs at 11 and 16 months and 3 and 6 years of age, but no neonatal MRI. RESULTS: All patients presented with refractory neonatal seizures on the first day of life after an uncomplicated pregnancy and term delivery. Six out of seven infants with a neonatal MRI had a characteristic MRI pattern, with punctate white matter lesions (PWML), which were no longer visible at the age of 6 months, but led to gliotic scarring visible on MRI at the age of 18 months. The same pattern of gliotic scarring was seen on the MRIs of the infant without a neonatal scan. One infant had signal abnormalities in the white matter suspected of PWML on T2WI, but these could not be confirmed on other sequences. CONCLUSION: In infants presenting with therapy resistant seizures in the first days after birth, without a clear history of hypoxic-ischemic encephalopathy, but with PWML on their neonatal MRI, a diagnosis of SCL13A5 related epileptic encephalopathy should be considered

    Punctate white matter lesions in full-term infants with neonatal seizures associated with SLC13A5 mutations

    No full text
    INTRODUCTION: Early-onset epileptic encephalopathy caused by biallelic SLC13A5 mutations is characterized by seizure onset in the first days of life, refractory epilepsy and developmental delay. Little detailed information about the brain MRI features is available in these patients. METHODS: Observational study describing the neuro-imaging findings in eight patients (five families) with mutations in the SLC13A5 gene. Seven infants had an MRI in the neonatal period, two had a follow-up MRI at the age of 6 and 18 months and one only at 13 months. One patient had follow-up MRIs at 11 and 16 months and 3 and 6 years of age, but no neonatal MRI. RESULTS: All patients presented with refractory neonatal seizures on the first day of life after an uncomplicated pregnancy and term delivery. Six out of seven infants with a neonatal MRI had a characteristic MRI pattern, with punctate white matter lesions (PWML), which were no longer visible at the age of 6 months, but led to gliotic scarring visible on MRI at the age of 18 months. The same pattern of gliotic scarring was seen on the MRIs of the infant without a neonatal scan. One infant had signal abnormalities in the white matter suspected of PWML on T2WI, but these could not be confirmed on other sequences. CONCLUSION: In infants presenting with therapy resistant seizures in the first days after birth, without a clear history of hypoxic-ischemic encephalopathy, but with PWML on their neonatal MRI, a diagnosis of SCL13A5 related epileptic encephalopathy should be considered

    Corticosteroids versus clobazam in epileptic encephalopathy with ESES: a European multicentre randomised controlled clinical trial (RESCUE ESES*)

    No full text
    BackgroundEpileptic encephalopathy with electrical status epilepticus in sleep (ESES) is an epilepsy syndrome occurring almost exclusively in children, usually at an age between 4 and 12years. It is characterised by abundant sleep-induced epileptic activity in the electroencephalogram (EEG) and by acquired cognitive and behavioural deficits. The goal of treatment is to prevent further decline or even improve cognitive functioning. Based on mostly small and retrospective studies, corticosteroids and clobazam are regarded by many clinicians as the most effective pharmacological treatments. This European multicentre randomised controlled trial is designed to compare the effects of corticosteroids and clobazam on cognitive functioning after 6months. Secondary outcomes include cognitive functioning after 18months, EEG abnormalities in sleep, safety and tolerability, and seizure frequency. We also aimed at investigating whether treatment response in epileptic encephalopathy with ESES can be predicted by measurement of inflammatory mediators and autoantibodies in serum.MethodsThe pragmatic study will be performed in centres with expertise in the treatment of rare paediatric epilepsy syndromes across Europe. A total of 130 patients, 2 to 12years of age, with epileptic encephalopathy with ESES will be enrolled and randomised in a 1:1 ratio to receive either corticosteroids (monthly intravenous methylprednisolone pulses or daily oral prednisolone) or oral clobazam for 6months according to an open-label parallel-group design. Follow-up visits with clinical assessment, EEGs, and neuropsychological testing are scheduled for up to 18months. Blood samples for cytokine and autoantibody testing are obtained before treatment and 8 months after treatment initiation.DiscussionThe treatment of epileptic encephalopathy with ESES aims at improving cognitive outcome. This randomised controlled study will compare the most frequently used treatments, i.e. corticosteroids and clobazam. If the study proves superiority of one treatment over the other or identifies biomarkers of treatment response, results will guide clinicians in the early treatment of this severe epilepsy syndrome.Trial registrationISRCTN, ISRCTN42686094. Registered on 24 May 2013

    De Novo Loss-of-Function Mutations in CHD2 Cause a Fever-Sensitive Myoclonic Epileptic Encephalopathy Sharing Features with Dravet Syndrome

    No full text
    Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures
    corecore