14 research outputs found

    Neuroconductor: an R platform for medical imaging analysis

    Get PDF
    Neuroconductor (https://neuroconductor.org) is an open-source platform for rapid testing and dissemination of reproducible computational imaging software. The goals of the project are to: (i) provide a centralized repository of R software dedicated to image analysis, (ii) disseminate software updates quickly, (iii) train a large, diverse community of scientists using detailed tutorials and short courses, (iv) increase software quality via automatic and manual quality controls, and (v) promote reproducibility of image data analysis. Based on the programming language R (https://www.r-project.org/), Neuroconductor starts with 51 inter-operable packages that cover multiple areas of imaging including visualization, data processing and storage, and statistical inference. Neuroconductor accepts new R package submissions, which are subject to a formal review and continuous automated testing. We provide a description of the purpose of Neuroconductor and the user and developer experience

    Arsenic exposure, diabetes-related genes and diabetes prevalence in a general population from Spain

    Get PDF
    Inorganic arsenic exposure may be associated with diabetes, but the evidence at low-moderate levels is not sufficient. Polymorphisms in diabetes-related genes have been involved in diabetes risk. We evaluated the association of inorganic arsenic exposure on diabetes in the Hortega Study, a representative sample of a general population from Valladolid, Spain. Total urine arsenic was measured in 1451 adults. Urine arsenic speciation was available in 295 randomly selected participants. To account for the confounding introduced by non-toxic seafood arsenicals, we designed a multiple imputation model to predict the missing arsenobetaine levels. The prevalence of diabetes was 8.3%. The geometric mean of total arsenic was 66.0 µg/g. The adjusted odds ratios (95% confidence interval) for diabetes comparing the highest with the lowest tertile of total arsenic were 1.76 (1.01, 3.09) and 2.14 (1.47, 3.11) before and after arsenobetaine adjustment, respectively. Polymorphisms in several genes including IL8RA, TXN, NR3C2, COX5A and GCLC showed suggestive differential associations of urine total arsenic with diabetes. The findings support the role of arsenic on diabetes and the importance of controlling for seafood arsenicals in populations with high seafood intake. Suggestive arsenic-gene interactions require confirmation in larger studies

    Restricted likelihood ratio testing for zero variance components in linear mixed models.

    No full text
    The goal of our article is to provide a transparent, robust, and computationally feasible statistical platform for restricted likelihood ratio testing (RLRT) for zero variance components in linear mixed models. This problem is nonstandard because under the null hypothesis the parameter is on the boundary of the parameter space. Our proposed approach is different from the asymptotic results of Stram and Lee who assumed that the outcome vector can be partitioned into many independent subvectors. Thus, our methodology applies to a wider class of mixed models, which includes models with a moderate number Of Clusters or nonparametric smoothing components. We propose two approximations to the finite sample null distribution of the RLRT statistic. Both approximations converge weakly to the asymptotic distribution obtained by Strain and Lee when their assumptions hold. When their assumptions do not hold, we show in extensive simulation studies that both approximations outpertform the Strain and Lee approximation and the parametric bootstrap. We also identify and address numerical problems associated with standard mixed model software. Our methods are motivated by and applied to a large longitudinal study on air Pollution health effects in a highly Susceptible cohort. Relevant software is posted as an online supplement

    Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling

    Get PDF
    AbstractBrain atrophy, measured by MRI, has been proposed as a useful surrogate marker for disease progression in multiple sclerosis (MS). However, it is conventionally assumed that the accurate quantification of brain atrophy is made difficult, if not impossible, by changes in the parameters of the MRI acquisition, which are almost inevitable over the course of a longitudinal study since MRI technology changes rapidly. This state of affairs can negatively affect clinical trial design and limit the use of historical data. Here, we investigate whether we can coherently estimate brain atrophy rates in a heterogeneous MS sample via linear mixed-effects multivariable regression, incorporating three critical assumptions: (1) using age at time of scanning, rather than time since baseline, as the regressor of interest; (2) scanning individuals with a variety of techniques; and (3) introducing a simple additive correction for major differences in MRI protocol. We fit the model to several measures of brain volume as the outcome in two MS populations: 1123 scans from 195 cases acquired for over approximately 7years in two natural history protocols (Cohort 1), and 1331 scans from 69 cases seen for over 11years who were primarily treated with two specific MS disease-modifying therapies (Cohort 2). We compared the mixed-effects model with additive correction for MRI acquisition parameters to a model fit without this correction and performed sample-size calculations to provide an estimate of the number of participants in an MS clinical trial that might be required to see a therapeutic effect of treatment using the approach described here. The results show that without the additive correction for T1-weighted protocol parameters, atrophy was underestimated and subject-specific estimates were more narrowly distributed about the population mean. Ventricular CSF is the most consistently estimated brain volume, with a mean of 2.8%/year increase in Cohort 1 and 4.4%/year increase in Cohort 2. An interesting observation was that gray matter volume decreased and white matter volume remained essentially unchanged in both cohorts, suggesting that changes in ventricular CSF volume are a surrogate for changes in gray matter volume. In conclusion, the mixed-effects modeling framework presented here allows effective use of heterogeneously acquired and historical data in the study of brain atrophy in MS, potentially simplifying the design of future single- and multi-site clinical trials and natural history studies

    A tensor-based population value decomposition to explain rectal toxicity after prostate cancer radiotherapy.

    No full text
    International audienceIn prostate cancer radiotherapy the association between the dose distribution and the occurrence of undesirable side-effects is yet to be revealed. In this work a method to perform population analysis by comparing the dose distributions is proposed. The method is a tensor-based approach that generalises an existing method for 2D images and allows for the highlighting of over irradiated zones correlated with rectal bleeding after prostate cancer radiotherapy. Thus, the aim is to contribute to the elucidation of the dose patterns correlated with rectal toxicity. The method was applied to a cohort of 63 patients and it was able to build up a dose pattern characterizing the difference between patients presenting rectal bleeding after prostate cancer radiotherapy and those who did not
    corecore