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In a general population from Spain with low-moderate inor-
ganic arsenic exposure, increased arsenic exposure, assessed as
urine arsenic concentrations, was associated with higher diabetes
prevalence. The reported associationwas stronger after adjustment
for urine arsenobetaine reflecting the importance of accounting for
seafood consumption in populations with high seafood intake.
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Carriers of specific genotypes may have increased susceptibility to
arsenic-related diabetes, although larger studies are needed to
confirm these suggestive findings.

2. Introduction

Epidemiological studies support that people with higher inor-
ganic arsenic exposure levels are more likely to have diabetes
(Navas-Acien et al., 2006) but the evidence at low to moderate
exposure levels is not sufficient. Moreover, most studies have been
conducted in Asia and the Americas, with very few studies on
arsenic and diabetes being conducted in Europe. Epidemiological
studies in diverse populations are needed given the elevated
burden of diabetes, a world-wide rapidly growing disease (World
Health Organization, 2016).

The sum of urine concentrations of inorganic arsenic (arsenite
[AsIII] plus arsenate [AsV]) and its methylated species (mono-
methylarsonate [MMA] and dimethylarsinate [DMA]) is an estab-
lished biomarker of inorganic arsenic exposure in populations with
low seafood intake (Navas-Acien et al., 2011). It is well known that
inorganic arsenic (iAs) is highly toxic to humans (World Health
Organization, 2001) and is associated with a wide range of
adverse health effects, including cancer (Bates et al., 1992), car-
diovascular disease (Moon et al., 2012) and others (D'Ippoliti et al.,
2015). People are exposed to inorganic arsenic mainly through
drinking contaminated water (National Research Council, 1999)
and through food intake (Wei et al., 2014). Organic arsenic species,
such as arsenobetaine (Asb), arsenolipids and arsenosugars, are
mostly found in saltwater finfish and shellfish and are considered
not harmful to human health (Mozaffarian and Rimm, 2006).
Among the seafood arsenicals, arsenobetaine is the most common
compound, which is rapidly cleared from the bloodstream and
excreted unchanged in the urine (Molin et al., 2014), contributing to
the total urinary arsenic concentrations. Arsenosugars and arsen-
olipids are metabolized in the body resulting in multiple metabo-
lites in the urine, including DMA, and contributing to the total
amount of inorganic arsenic species. As a result, in the presence of
seafood intake, it is necessary to account for the potential residual
confounding of organic arsenic in the interpretation of urinary
arsenic concentrations as a biomarker of inorganic arsenic expo-
sure (Navas-Acien et al., 2011).

The objective of this study was to evaluate the association of
inorganic arsenic exposure, assessed as total urinary arsenic con-
centrations, with the prevalence of type 2 diabetes in a population
from Spainwith relatively high seafood consumption. This research
was complicated by the presence of missing completely at random
urine arsenobetaine concentrations for the ~80% of the study
sample. We thus developed and implemented a multiple imputa-
tion model based in Markov Chain Monte Carlo (MCMC) methods
using Gibbs sampling to account for the potential residual con-
founding by organic arsenicals in the whole study population.
Given the well-established role of genetic variation on diabetes
traits (Mahajan et al., 2014) and the paucity of gene-environmental
interaction studies, we also evaluated the interaction of arsenic and
diabetes-related candidate polymorphisms as a potential deter-
minant of diabetes.

3. Methods

3.1. Study population

The present study was conducted among adult participants of
the Hortega Study, who were beneficiaries of the public health
system assigned to the Rio Hortega University Hospital's catchment
area (Valladolid, northwestern Spain). The Hortega Study uses a
complex sampling design to obtain a representative sample of the
general population. The sampling design and methodology have
been previously described (Mena Martin et al., 2003). In
2001e2003, baseline information on socio-demographic, behav-
ioral, dietary and other health-related factors were collected from
in-person interviews, examinations, and review of health records
(see e-Appendix 1). After signing an informed consent form, urine
and blood samples were collected and stored at �80 �C. A total of
1502 individuals had sufficient urine and plasma samples available
for metal determinations. After excluding 21 participants with
missing total arsenic concentrations, 2 missing urine creatinine, 10
missing seafood intake, and 18 missing other relevant covariates,
1451 participants were included in the present study.
3.2. Arsenic measurements and arsenobetaine imputation

Urine arsenic determinations were conducted by the Laboratory
of Analytical and Bioanalytical Chemistry of Huelva University
(Spain) in 2013. Total urine arsenic and arsenic species concentra-
tions were measured by inductively coupled-plasma mass spec-
trometry (ICPMS) on an Agilent 7500CEx ICPMS (Agilent
Technologies, Santa Clara, California) and by anion exchange liquid
chromatography coupled to ICPMS with octapole reaction cell,
respectively, following a standardized protocol (see e-Appendix 2).
Urine arsenic speciation, including AsIII, AsV, MMA, DMA, and Asb
concentrations, occurred only in a random subsample of 295 in-
dividuals, leaving 1156 (79.7%) of the 1451 participants with
missing completely at randomurine arsenic species concentrations.
Asb and DMA levels below the limit of detection (12 and 1 unde-
tectable values, respectively) were imputed by the limit of detec-
tion divided by the square root of 2 (Hornung RW and Reed LD,
1990). Total plasma arsenic levels were measured in the whole
study population in 2010 by atomic absorption spectrometry with
graphite furnace at Cerba International Laboratories Ltd. 42.6% of
total plasma arsenic concentrations were under the limit of
detection. See limits of detection in e-Appendix 2.

We used the arsenic speciation information available in the
random subsample to generate 5 complete datasets (for the 1451
participants) inwhich the Asb valuesmissing completely at random
where imputed as the 30th, 40th, 50th, 60th and 70th percentiles of
each subject-specific posterior distribution obtained from a MCMC
by Gibbs sampling nested linear model (Tellez-Plaza et al., 2010),
implemented with WinBUGS software (Lunn et al., 2000) (see e-
Appendix 3). Total plasma arsenic and DMA where strongly corre-
lated with Asb (spearman correlation coefficients¼ 0.65 and 0.54,
respectively). Thus, we incorporated the correlation of total plasma
arsenic, DMA and Asb conditionally in our imputation model. We
did not considered AsIII, AsV and MMA as potential Asb predictors.
As a result, the MCMC arsenobetaine imputation model consisted
of a tri-variate model with nested equations for Asb, DMA and total
plasma arsenic, each based on strong predictors selected by a
backward stepwise process starting from total urine concentrations
and a list of socio-demographic and established arsenic exposure
determinants (age, gender, smoking status, cotinine, body mass
index, seafood, rice and chicken consumption) (e-Appendix 3, e-
Table 1). For Asb and DMA, the predictive equations were stan-
dard linear models, whereas for total plasma arsenic the predictive
equationwas a tobit linear model for truncated data. TheWinBUGS
code of the imputation model is provided in e-Appendix 3. We
conducted a post-hoc validation process to measure the predictive
error of the MCMC imputation model using data from the Aragon
Workers Health Study, an independent dataset with data on total
urine arsenic, urine arsenic species and total plasma arsenic (e-
Appendix 4 and e-Table 2).



3.3. Diabetes determination

All participants provided blood samples after an average time of
3 h from fasting (range 0e17). Plasma glucose was measured by an
automated analyzer based on the glucose oxidase method. Partic-
ipants with non-fasting glucose �140mg/dL in the first determi-
nation, underwent an additional measure of glucose in fasting
conditions. Glycosylated hemoglobin (HbA1c) was measured from
capillary blood samples using a DCA 2000 HbA1c analyzer (Mena
Martin et al., 2003). Prevalent type 2 diabetes was defined as
fasting glucose levels�126mg/dL, or HbA1c > 6.5%, or by physician
diagnosis or glucose-lowering medication use.

3.4. Single nucleotide polymorphisms selection and genotyping

We selected 155 candidate genes, including 597 single nucleo-
tide polymorphisms (SNPs), which were related with diabetes
metabolic pathways. Detailed methods on DNA isolation and SNP
genotyping have been previously published (Galan-Chilet et al.,
2017). The mean genotyping coverage across all genotyped SNPs
was 95%. Among the 597 selected SNPs, we excluded 42 because
the coverage in the study sample was less than 90%, 59 with less
than 3 genotypes, 25 with minor allele frequency <5%, 41 that did
not meet the HardyeWeinberg equilibrium (P< .01), and 76 with
minor genotype frequency <20 individuals. 354 SNPs were finally
included in gene-environment interaction analyses. The complete
list of the selected genes and SNPs is provided in e-Table 3.

3.5. Statistical methods

Due to the different selection probabilities of the Hortega Study
participants, all analyses were weighted to the underlying adult
population aged 20 or older. Total urine arsenic and Asb concen-
trations were divided by urine creatinine and log-transformed for
statistical analyses. We estimated the odds ratios and 95% confi-
dence intervals (95% CI) for the association between total urine
arsenic and diabetes prevalence using progressively adjusted lo-
gistic regression models. Model 1 was adjusted for age, gender and
education. Model 2 was further adjusted for urine cotinine levels,
smoking status, alcohol consumption, fish consumption and resi-
dence place. Model 3 was additionally adjusted for urine Asb levels.
Total urine arsenic was modeled as tertiles and as restricted
quadratic splines (see e-Appendix 5).We also exploredwhether the
association between diabetes and arsenic was modified by gender,
smoking status, abnormal albuminuria and reduced glomerular
filtration rate status by including the interaction term of continuous
total urine arsenic and the corresponding group variable in fully-
adjusted models. Gene-environment interaction analyses were
conducted by including each SNP and its interaction termwith total
urine arsenic levels. For each SNP, we estimated three separate
models assuming dominant, recessive and additive inheritance. If
only one model showed statistically significant SNP-arsenic in-
teractions, we reported the associations in strata defined by the
corresponding genotypes for this specific model. In cases where
more than one model met statistically significant SNP-arsenic in-
teractions, we reported the best fitting model selected by
comparing to a general model that included separate dummy var-
iables for the heterozygote and minor allele homozygote (reference
major allele homozygote). The effective SNP number obtained with
Plink software (Purcell et al., 2007) was 242, therefore we used a
Bonferroni-corrected significance level of 0.0002 (0.05 divided by
242).

After the imputation of Asb and DMA missing completely at
random and plasma arsenic levels below the detection limit, we
obtained 5 databases with complete data for total urine arsenic and
Asb concentrations. All statistical analyses above described were
performed in each of the 5 data sets, and the results were combined
using the method proposed by Rubin for multiple imputation
procedures (Rubin, 1978). In sensitivity analysis, we also evaluated
the association of urine total arsenic and the sum of inorganic and
methylated arsenic species in urine with diabetes within the subset
of 295 individuals with arsenic speciation data (e-Table 4). See e-
Appendix 5 for additional sensitivity analyses. All statistical tests
were two-sided.

4. Results

4.1. Participant characteristics

Among the 1451 participants, 120 (8.3%) had prevalent type 2
diabetes (Table 1). Participants with type 2 diabetes were more
likely to be men, older, former smoker, with lower education and to
have lower fish intake. The overall geometric mean of total plasma
arsenic and total urine arsenic in the complete study population
were 2.6 mg/L and 66.0 mg/g, respectively. The overall geometric
mean of the sum of inorganic arsenic species, i.e,
AsIII þ AsV þ MMA þ DMA (SiAs), and arsenobetaine in the
randomly selected subsample of 295 participants was 11.1 mg/g and
47.3 mg/g, respectively. Participants with diabetes were older and
showed higher values of all arsenic biomarkers (3.8 mg/L of total
plasma arsenic, 106 mg/g of total urine arsenic, 14.9 mg/g of SiAs and
66.5 mg/g of Asb).

4.2. Total urine arsenic and diabetes prevalence

We found a positive significant association of total urine arsenic
with diabetes prevalence before and after adjustment for arsen-
obetaine concentrations (Table 2). The fully adjusted odds ratio
(95% CI) for diabetes comparing the second and the third tertiles
with the first one of total urine arsenic were 2.03 (1.63, 2.53) and
2.14 (1.47, 3.11), respectively (Table 2, model 3). In model 2, which
was not adjusted for Asb, this relation was weaker and not strictly
increasing (odds ratio (95% CI) comparing the second and third
tertiles to the lowest were 1.85 (1.04, 3.30) and 1.76 (1.01, 3.09),
respectively). The analyses repeated in the random subsample with
originally measured arsenic species showed consistent findings (e-
Table 4). Flexible models based on splines confirmed that multi-
variable adjusted odds ratio were higher after adjusting for Asb
(model 2 versus model 3) (Fig. 1). No significant differences for the
odds ratio of diabetes were found for gender, ever-smoking status
and abnormal albuminuria subgroups (Table 3). For reduced
glomerular filtration rate status, however, the association between
arsenic and diabetes was stronger among participants without
kidney disease (P of interaction¼ 0.02).

4.3. Gene-environment interaction

In gene-environment interaction analyses, while no poly-
morphism showed significant interactions with total urine arsenic
after correcting for multiple comparisons, several genotypes
showed marginally significant differential associations with dia-
betes (Fig. 2 and Table 4). The top 5 genes showing the highest
statistical interactions were IL8RA (rs1008562 [P¼ .004]), TXN
(rs4135168 [P¼ .004]), NR3C2 (rs13117325 [P¼ .007]), COX5A
(rs1133322 [P¼ .01]) and GCLC (rs11415624 [P¼ .01]).

5. Discussion

We found a positive association between increasing levels of
total urine arsenic and the prevalence of type 2 diabetes in a



Table 1
Participant characteristics by overall and type 2 diabetes status.

Characteristics No T2D T2D Overall

(N¼ 1331) (N¼ 120) (N¼ 1451)

Age (years); mean (SE) 48.5 (0.2) 67.1 (1.4) 49.7 (0.2)
Gender (male); % (SE) 48.2 (0.3) 60.6 (4.6) 49.0 (0.0)
Education (<secondary education); % (SE) 20.9 (1.0) 43.8 (4.8) 22.4 (1.0)
Body mass index (kg/m2); mean (SE)a 26.0 (0.1) 28.7 (0.5) 26.2 (0.1)
Urine cotinine ng/mL; % (SE)
< 34 72.7 (1.3) 85.1 (3.8) 73.5 (1.2)
34-500 5.6 (0.7) 4.9 (2.2) 5.6 (0.6)
> 500 21.7 (1.2) 10.1 (3.4) 20.9 (1.1)

Smoking status; % (SE)
Never 44.5 (1.3) 46.1 (4.8) 44.6 (1.3)
Former 27.9 (1.2) 39.8 (4.8) 28.6 (1.2)
Current 27.7 (1.3) 14.1 (3.8) 26.8 (1.2)

Alcohol intake (mg/day); mean (SE) 11.2 (0.6) 11.2 (2.9) 11.2 (0.6)
Fish intake (g/month); % (SE)
0 12.4 (0.9) 24.0 (4.2) 13.1 (0.9)
0e2000 46.0 (1.4) 32.4 (4.6) 45.2 (1.3)
> 2000 41.6 (1.4) 43.7 (4.9) 41.7 (1.3)

Residence place (urban); % (SE) 76.6 (1.2) 75.8 (4.3) 76.6 (1.1)
Total plasma arsenic (mg/L); GM (95% CI) 2.5 (2.4, 2.7) 3.8 (3.0, 4.7) 2.6 (2.4, 2.7)
Total urine arsenic (mg/L); GM (95% CI) 59.5 (55.3, 64.0) 106.4 (82.6, 137) 61.7 (57.5, 66.2)
Urine creatinine (g/L); GM (95% CI) 0.93 (0.90, 0.96) 1.01 (0.91, 1.12) 0.94 (0.91, 0.96)
Total urine arsenic (mg/g); GM (95% CI) 64.0 (59.0, 69.3) 106 (82.3, 136) 66.0 (61.1, 71.2)
SiAs (mg/g); GM (95% CI) b,c 10.9 (9.2, 12.9) 14.9 (11.0, 20.2) 11.1 (9.5, 13.0)
Arsenobetaine (mg/g); GM (95% CI) c 46.1 (37.5, 56.7) 66.5 (37.9, 116.6) 47.3 (38.8, 57.6)
% iAs; median (IQR) c 2.7 (1.1, 5.8) 1.9 (1.4, 5.0) 2.6 (1.2, 5.6)
% MMA; median (IQR) c 11.0 (2.7, 29.7) 6.3 (2.5, 18.5) 10.4 (2.7, 29)
% DMA; median (IQR) c 83.7 (61.1, 94.3) 90.8 (79.5, 94.7) 84.6 (62.5, 94.3)

AsIII, AsV, MMA, DMA and Asb not detectable values were imputed as a LOD divided by the square root of 2.; Abbreviations: T2D, type 2 diabetes; SE, standard error; GM,
geometric mean; CI, confidence interval; IQR, interquartile range; AsIII, arsenite; AsV, arsenate; iAs, inorganic arsenic, MMA monomethylarsonate; DMA, dimethylarsinate;
Asb, arsenobetaine.

a 6 and 50 participants with and without T2D missed body mass index information.
b SiAs ¼ AsIII þAsV þ MMA þ DMA; iAs ¼ AsIII þ AsV.
c Calculated in the 295 participants subsample with available arsenic speciation measurements (27 and 268 participants with and without T2D).

Table 2
Odds ratio (95% confidence interval) for type 2 diabetes by total urine arsenic concentrations (N¼ 1451).

Total Urine Arsenic, mg/g Cases/Non cases Model 1a Model 2b Model 3c

OR 95% CI OR 95% CI OR 95% CI

Tertile 1 (0e33.77) 25/437 1 Ref. 1 Ref. 1 Ref.
Tertile 2 (33.77e123.90) 41/432 1.85 1.04, 3.28 1.85 1.04, 3.30 2.03 1.63, 2.53
Tertile 3 (>123.90) 54/462 1.75 1.01, 3.03 1.76 1.01, 3.09 2.14 1.47, 3.11
p80th vs. p20th 120/1331 1.30 0.94, 1.80 1.31 0.94, 1.81 1.76 1.54, 2.02

AbbreviationsOR, odds ratio; CI, confidence interval.
p80th and p20th are 229.93 and 19.25 mg/g of creatinine, respectively.

a Model 1: Adjusted for age (years), gender (male, female) and education (<secondary education, >¼ secondary education).
b Model 2: Model 1 further adjusted for urine cotinine levels (<34, 34e500 and> 500 ng/mL), smoking status (non-smoker, former and current), alcohol consumption (mg/

day), fish consumption (g/month), and residence place (rural, urban).
c Model 3: Model 2 further adjusted for log-transformed urine arsenobetaine levels (mg/g).
representative sample of Spanish adults characterized by exposure
to low arsenic levels. Our results support the relevance of adjusting
for arsenobetaine levels in populations with high seafood con-
sumption in order to estimate the association with arsenic expo-
sure not derived from seafood. We also observed suggestive
statistical interactions of urine arsenic levels with genetic variation
in several genes involved in diabetes metabolic pathways, espe-
cially genes involved in regulation of oxidative stress response or
inflammation.

The arsenobetaine levels in our study population (median:
160.3 mg/L, interquartile range: 15.8e124.5 mg/L) were much higher
than those observed in a study of the 2003e2004 National Health
and Nutrition Examination Survey (NHANES) (median: 0.9 mg/L,
interquartile range: 0.3e3.5 mg/L) (Navas-Acien et al., 2008),
reflecting a higher seafood intake. In populations with low seafood
consumption, subtracting arsenobetaine concentration from total
urine arsenic levels may provide a valid estimate of inorganic
arsenic, since it removes the most common part of organic arsenic
in seafood (Steinmaus et al., 2009). In populations with high sea-
food consumption, however, this approach may not be sufficient to
remove the contribution of other seafood organic arsenic com-
pounds, such as arsenosugars and arsenolipids and their metabo-
lites, including DMA (Navas-Acien et al., 2011). Arsenobetaine is
specific to seafood, it is excreted in the urine untransformed, and it
is correlated with other seafood arsenicals. Using arsenobetaine as
a covariate in the statistical regression models can thus indirectly
control for other seafood arsenic species and their metabolites
(Navas-Acien et al., 2009).

In 2003, the maximum admissible arsenic levels in drinking
water in Spain decreased from 50 mg/L to 10 mg/L (Ministerio de la
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Fig. 1. Odds ratio of type 2 diabetes by total urine arsenic concentrations, before
and after adjustment for arsenobetaine (Asb). Curves represent the odds ratios for
type 2 diabetes based on restricted quadratic splines with knots at the 10th, 50th, and
90th percentiles (10.4, 61.1 and 450.1 mg/g, respectively) of the total urine arsenic
distribution. The reference was set at the 10th percentile of the total urine arsenic
distribution. Dotted line and light gray area represent the odds ratio and the 95%
confidence interval before adjustment for arsenobetaine levels, i.e., adjusted for age,
gender, education (<secondary education, �secondary education), urine cotinine levels
(<34, 34e500 and > 500 ng/mL), smoking status (non-smoker, former, current),
alcohol intake, fish intake, and residence place (rural, urban). Solid line and dark gray
area represent the odds ratio and the 95% confidence interval after further adjustment
for log-transformed urine arsenobetaine (mg/g). Bars represent the weighted distri-
bution of creatinine corrected total urine arsenic concentrations (mg/g). Tails were
truncated by excluding 1% of the study sample with total urine arsenic concentrations
below 2.6 mg/g and 1% of the study sample with total urine arsenic concentrations
above 2400 mg/g.

Table 3
Odds ratio (95% confidence interval) for type 2 diabetes comparing the 80th and the
20th percentiles of total urine arsenic by participant subgroups (N¼ 1451).

N Cases/Non cases OR 95% CI Interaction P

Overall 1451 120/1331 1.76 1.54, 2.02
Gender
Female 722 46/676 1.68 1.45, 1.94
Male 729 74/655 1.85 1.57, 2.19 0.77

Smoking
Never 681 59/622 2.08 1.78, 2.42
Ever 770 61/709 1.52 1.30, 1.78 0.35

Abnormal Albuminuria
No 1421 108/1313 1.92 1.67, 2.21
Yes 26 14/12 2.79 1.67, 4.66 0.61

Reduced GFR
No 1331 94/1237 2.19 1.89, 2.54
Yes 120 26/94 0.99 0.85, 1.15 0.02

Abbreviations: OR, odds ratio; CI, confidence interval; GFR, glomerular filtration
rate. p80th and p20th are 229.93 and 19.25 mg/g of creatinine, respectively. Models
were adjusted for further adjusted for age (years), gender (male, female), educa-
tional level (<secondary education, >¼ secondary education), urine cotinine (<34,
34e500 and> 500 ng/mL), smoking status (non-smoker, former and current),
alcohol consumption (mg/day), fish consumption (g/month), residence place (rural,
urban), and log-transformed urine arsenobetaine levels (mg/g).
Presidencia, 2003) as recommended by the World Health Organi-
zation. Our study participants were recruited between 1997 and
2003 in Valladolid, in central Spain. Most participants were most
likely exposed to low levels of inorganic arsenic in drinkingwater. It
is possible, however, that some participants coming from rural
areas could have been exposed to moderate-high arsenic levels
from the groundwater. A study evaluating groundwater quality in
rural areas of Valladolid found concentrations of arsenic reaching
levels as high as 260 mg/L in 2001 (mean¼ 93 mg/L), 187 mg/L in
2003 (mean¼ 48 mg/L) and 51 mg/L in 2007 (mean¼ 15 mg/L)
(Mayorga et al., 2014). In our study population, the sum of inorganic
and methylated arsenic concentrations was similar in participants
from rural (geometric mean¼ 8.8 mg/g) and urban areas (geometric
mean¼ 11.9 mg/g), even after adjustment for Asb and seafood
intake (data not shown).

Several epidemiologic studies have found positive associations
between arsenic exposure levels and diabetes in adults, both cross-
sectionally (Navas-Acien et al., 2008) and prospectively (Brauner
et al., 2014; James et al., 2013; Kim et al., 2013). In the US,
increasing levels of urine arsenic were associated with increasing
odds of diabetes after adjustment for urine arsenobetaine (Navas-
Acien et al., 2008). Long-term exposure to low arsenic levels,
assessed as arsenic concentrations in drinking water, has been
prospectively associated with diabetes in central Italy (D'Ippoliti
et al., 2015) and Denmark (Brauner et al., 2014). Studies using
biomarkers of arsenic exposure also found positive relationship
between arsenic and incident diabetes in Colorado (James et al.,
2013) and American Indians from South-West of the United
States (Kim et al., 2013), but not in American Indians 45e74 years of
age participating in the Strong Heart Study (Kuo et al., 2015).

Experimental evidence supports the role of arsenic as a diabetes
risk factor. In rodents, exposure to arsenic through contaminated
water has shown to induce insulin resistance (Palacios et al., 2012)
and beta-cell dysfunction (Liu et al., 2014). The liver is the major
target organ of the regulation of arsenic exposure and metabolism
levels, and several experimental studies have demonstrated that
chronic arsenic exposure induces severe toxic effects in the liver
(Santra et al., 1999; Mazumder, 2005). The liver also plays a major
role in the regulation of glucose metabolism (Cotrozzi et al., 1997).
In vivo evidence suggests that arsenic-induced diabetes may be
mediated by increased oxidative stress in hepatic and pancreatic
tissue (Patel and Kalia, 2013). Interestingly, in our gene-
environment interaction analysis, we observed differential associ-
ations of arsenic with polymorphisms in genes involved in redox-
related pathways, including SNPs in TXN and GCLC, genes that are
highly expressed in the pancreas and liver (Diaz et al., 2002; Tran
et al., 2004; Yamamoto et al., 2008; Okuyama et al., 2008),
although the evidence was only suggestive. Some studies, however,
support a potential biological link between proteins encoded by
these genes and arsenic.

A positive correlation was observed between serum thio-
redoxin1 (TXN1) and total water arsenic intake or urinary arsenic
species in humans (Li et al., 2012). Arsenic inhibits thioredoxin
reductase, and this may contribute to TXN oxidation (Lin et al.,
2001). Another mechanistic study showed that arsenic exposure
can disrupt the GCLC expression, since low arsenic exposure
increased the expression of GCLC in liver tissues of rats while high
arsenic exposure levels reduced its expression (Ren et al., 2015). In
addition, the interaction of arsenic with the polymorphism
rs1008563 in IL8RA (also known as CXCR2), a chemokine receptor
for interleukin-8 (IL8), showed the highest p-value. Several lines of
evidence support that IL8RA inhibitors play a key role in the etio-
pathogenesis of type 1 diabetes (Diana et al., 2013; Valle et al.,
2013). Interestingly, an experimental study found that urothelial
cells chronically exposed to trivalent monomethylarsonate showed
an over-expression of IL8 (Escudero-Lourdes et al., 2012).

Despite the limited power to detect interactions at the
Bonferroni-corrected level, we found marginally significant asso-
ciations for some polymorphisms, which, given the biological
relevance on diabetes-related pathways, should be evaluated in



Fig. 2. Candidate genes-arsenic interaction elog10 P-values. P-values for 354 SNPs derived from linear regression models (dominant, recessive and additive model) adjusted for
age, sex, education, urine cotinine levels, smoking status, alcohol consumption, fish consumption, residence place and log-transformed arsenobetaine, are presented on the left Y
axis on the logarithmic scale according to the position of the SNPs on chromosome (X axis). The horizontal solid line corresponds to a nominal p-value of significance equal to 0.05.
Horizontal dashed line corresponds the effective SNP number corrected p-value equal to 0.0002.

Table 4
Odds ratio (95% CI) of type 2 diabetes comparing the 80th vs the 20th percentiles of total urine arsenic distribution by genotypes among the 5 genes with top interaction p-
values.

Chr. Gene SNP Model Cases/Non cases Genotype OR 95% CI P Interaction

2 IL8RA rs1008563 ADD 40/329 T/T 2.26 2.18, 2.34 0.004
46/608 T/C 3.38 3.29, 3.46
27/313 C/C 5.04 4.69, 5.42

rs1008562 ADD 49/451 C/C 2.48 2.40, 2.56 0.01
44/602 C/G 3.48 3.39, 3.58
20/207 G/G 4.89 4.48, 5.33

9 TXN rs4135168 DOM 71/732 A/A 4.19 4.01, 4.38 0.004
47/566 A/G þ G/G 2.48 2.38, 2.58

4 NR3C2 rs13117325 ADD 48/572 G/G 3.87 3.73, 4.02 0.007
46/554 G/A 2.82 2.76, 2.88
18/138 A/A 2.06 1.93, 2.19

rs2137335 DOM 82/779 T/T 2.70 2.63, 2.76 0.01
33/492 T/C þ C/C 4.65 4.30, 5.03

6 GCLC rs11415624 ADD 58/585 D/D 3.80 3.67, 3.93 0.01
54/574 D/A 2.73 2.67, 2.79
8/164 A/A 1.96 1.84, 2.09

15 COX5A rs1133322 REC 96/978 T/C þ T/T 3.44 3.36, 3.53 0.01
21/323 C/C 2.03 1.90, 2.17

Abbreviations: OR, odds ratio; CI, confidence interval; ADD, DOM, and REC, additive, dominant and recessive model, respectively.
The Bonferroni-corrected significance level was 0.0002.
Odds ratio for diabetes comparing the 80th and 20th percentiles of urine arsenic distributions (229.93 and 19.24 mg/g respectively) and associated test for interaction were
obtained from linear regression models with log-transformed arsenic as a continuous variable. Models were adjusted for age (years), sex (male, female), education (<sec-
ondary education, >¼secondary education), urine cotinine levels (<34, 34e500 and> 500 ng/mL), smoking status (non-smoker, former and current), alcohol consumption
(mg/day), fish consumption (g/month), residence place (rural, urban) and log-transformed arsenobetaine (mg/g).
larger studies. There are limited studies evaluating the interaction
of genetic variation and arsenic on diabetes. A prospective study in
Bangladesh (N¼ 957) reported a significant interaction of SNPs in
NOTCH2 with arsenic exposure (assessed in drinking water) on the
association with type 2 diabetes (Pan et al., 2013). Unfortunately,
we did not genotype candidate SNPs in NOTCH2. Additional and
larger prospective studies, especially with an extensive panel of
candidate genes, are needed.

One of the limitations of our study is the cross-sectional design,
which cannot determine the direction of the associations. Elevated
arsenic exposure levels could increase diabetes risk by inducing
liver damage, as well as liver dysfunction related to diabetes might
influence arsenic metabolism and result in higher arsenic excretion
in the urine (Ahmadieh and Azar, 2014). Another limitation is the
use of one single urine sample given the within-subject variability
in urinary arsenic excretion. Our study has also some strengths,
including the complex sampling design; the adjustment for rele-
vant diabetes risk factors, potential confounders and markers of



seafood intake; the use of a multiple imputation model to adjust
total urine arsenic for arsenobetaine, which enabled the use of
urinary arsenic as a proxy for inorganic arsenic exposure; and the
availability of SNPs in 155 candidate genes for gene-environmental
evaluation.

In conclusion, arsenic exposure was associated with increased
prevalence of type 2 diabetes in a general population from Spain.
Our findings support the hypothesis that arsenic plays a biological
role as a diabetogenic risk factor. Our analytical strategy also shows
the importance of controlling for seafood arsenicals in populations
with high seafood consumption. While the evaluated gene-
environment interactions were only close to statistical signifi-
cance after multiple comparisons correction, and should be only
considered exploratory, our results provide the basis for gene-
environment interaction studies in larger epidemiologic studies.
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