24 research outputs found

    Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarrays

    Get PDF
    Varicella-zoster virus (VZV) is a human herpes virus that causes varicella as a primary infection and herpes zoster following reactivation of the virus from a latent state in trigeminal and spinal ganglia. In order to study the global pattern of VZV gene transcription, VZV microarrays using 75-base oligomers to 71 VZV open reading frames (ORFs) were designed and validated. The long-oligonucleotide approach maximizes the stringency of detection and polarity of gene expression. To optimize sensitivity, microarrays were hybridized to target RNA and the extent of hybridization measured using resonance light scattering. Microarray data were normalized to a subset of invariant ranked host-encoded positive-control genes and the data subjected to robust formal statistical analysis. The programme of viral gene expression was determined for VZV (Dumas strain)-infected MeWo cells and SVG cells (an immortalized human astrocyte cell line) 72 h post-infection. Marked quantitative and qualitative differences in the viral transcriptome were observed between the two different cell types using the Dumas laboratory-adapted strain. Oligonucleotide-based VZV arrays have considerable promise as a valuable tool in the analysis of viral gene transcription during both lytic and latent infections, and the observed heterogeneity in the global pattern of viral gene transcription may also have diagnostic potentia

    GPX-Macrophage Expression Atlas: A database for expression profiles of macrophages challenged with a variety of pro-inflammatory, anti-inflammatory, benign and pathogen insults

    Get PDF
    BACKGROUND: Macrophages play an integral role in the host immune system, bridging innate and adaptive immunity. As such, they are finely attuned to extracellular and intracellular stimuli and respond by rapidly initiating multiple signalling cascades with diverse effector functions. The macrophage cell is therefore an experimentally and clinically amenable biological system for the mapping of biological pathways. The goal of the macrophage expression atlas is to systematically investigate the pathway biology and interaction network of macrophages challenged with a variety of insults, in particular via infection and activation with key inflammatory mediators. As an important first step towards this we present a single searchable database resource containing high-throughput macrophage gene expression studies. DESCRIPTION: The GPX Macrophage Expression Atlas (GPX-MEA) is an online resource for gene expression based studies of a range of macrophage cell types following treatment with pathogens and immune modulators. GPX-MEA follows the MIAME standard and includes an objective quality score with each experiment. It places special emphasis on rigorously capturing the experimental design and enables the searching of expression data from different microarray experiments. Studies may be queried on the basis of experimental parameters, sample information and quality assessment score. The ability to compare the expression values of individual genes across multiple experiments is provided. In addition, the database offers access to experimental annotation and analysis files and includes experiments and raw data previously unavailable to the research community. CONCLUSION: GPX-MEA is the first example of a quality scored gene expression database focussed on a macrophage cellular system that allows efficient identification of transcriptional patterns. The resource will provide novel insights into the phenotypic response of macrophages to a variety of benign, inflammatory, and pathogen insults. GPX-MEA is available through the GPX website at

    Whole blood gene expression profiling of neonates with confirmed bacterial sepsis

    Get PDF
    peer-reviewedNeonatal infection remains a primary cause of infant morbidity and mortality worldwide and yet our understanding of how human neonates respond to infection remains incomplete. Changes in host gene expression in response to infection may occur in any part of the body, with the continuous interaction between blood and tissues allowing blood cells to act as biosensors for the changes. In this study we have used whole blood transcriptome profiling to systematically identify signatures and the pathway biology underlying the pathogenesis of neonatal infection. Blood samples were collected from neonates at the first clinical signs of suspected sepsis alongside age matched healthy control subjects. Here we report a detailed description of the study design, including clinical data collected, experimental methods used and data analysis workflows and which correspond with data in Gene Expression Omnibus (GEO) data sets (GSE25504). Our data set has allowed identification of a patient invariant 52-gene classifier that predicts bacterial infection with high accuracy and lays the foundation for advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis

    Molecular profiling of the human testis reveals stringent pathway-specific regulation of RNA expression following gonadotropin suppression and progestogen treatment

    Get PDF
    Gonadotropin withdrawal induces changes in gene expression in all 3 major cell types of the testis. Knowledge of the genes affected, in both the presence and absence of additional progestogen, will give insight into the regulation of human testicular function and aid development of novel contraceptive methods. We have undertaken a whole‐genome analysis of RNA expression in testicular biopsies from normal men and after 4 weeks of gonadotropin suppression induced by gonadotropin‐releasing hormone antagonist plus testosterone administration sufficient to cause marked suppression of spermatogenesis. Microarray analysis shows that interindividual variability is markedly low, and the response to treatment is focused on a small subset of genes particularly related to pathways in steroidogenesis and cholesterol biosynthesis or metabolism, the Leydig cell gene INSL3, and genes involved in early meiosis or Sertoli—germ cell junctions. These changes in expression were confirmed by quantitative reverse transcriptase polymerase chain reaction. No major changes in gene expression were identified in men additionally treated with a progestogen, although FLJ35767, an expressed sequence tag that is expressed in the germ cell compartment, did show a small but significant additional effect of progestogen. Overall, the results of this investigation disclose a remarkably stringent regulation of testicular gene expression, revealing the genes most sensitive to gonadotropin withdrawal, and might reflect the most labile pathways in the regulation of testicular functio

    Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

    Get PDF
    Background Interferons (IFNs) are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs). Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ. Results Transfection of murine bone-marrow derived macrophages (BMDMs) with a non-targeting (control) siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000) prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. Conclusion Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated with type I and type II IFN signalling and a suppression of macrophage M1 polarization

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    GreenPhylDB v2.0: comparative and functional genomics in plants

    Get PDF
    GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery

    nSeP: immune and metabolic biomarkers for early detection of neonatal sepsis-protocol for a prospective multicohort study

    Get PDF
    Introduction Diagnosing neonatal sepsis is heavily dependent on clinical phenotyping as culture-positive body fluid has poor sensitivity, and existing blood biomarkers have poor specificity. A combination of machine learning, statistical and deep pathway biology analyses led to the identification of a tripartite panel of biologically connected immune and metabolic markers that showed greater than 99% accuracy for detecting bacterial infection with 100% sensitivity. The cohort study described here is designed as a large-scale clinical validation of this previous work. Methods and analysis This multicentre observational study will prospectively recruit a total of 1445 newborn infants (all gestations)—1084 with suspected early—or late-onset sepsis, and 361 controls—over 4 years. A small volume of whole blood will be collected from infants with suspected sepsis at the time of presentation. This sample will be used for integrated transcriptomic, lipidomic and targeted proteomics profiling. In addition, a subset of samples will be subjected to cellular phenotype and proteomic analyses. A second sample from the same patient will be collected at 24 hours, with an opportunistic sampling for stool culture. For control infants, only one set of blood and stool sample will be collected to coincide with clinical blood sampling. Along with detailed clinical information, blood and stool samples will be analysed and the information will be used to identify and validate the efficacy of immune-metabolic networks in the diagnosis of bacterial neonatal sepsis and to identify new host biomarkers for viral sepsis

    Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses

    Get PDF
    Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPβ and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage

    Transcriptional responses of murine macrophages to the adenylate cyclase toxin of Bordetella pertussis

    No full text
    Three different recombinant forms of CyaA were used to investigate transcriptional responses of murine bone marrow-derived macrophages (BMMs) using Affymetrix Mouse Genome GeneChips®. These forms were enzymically active, invasive CyaA, non-enzymically active, invasive CyaA (CyaA*) and non-enzymically active, non-invasive CyaA (proCyaA*). BMMs, treated with 20 ng/ml of CyaA for 24 h, showed over 1000 significant changes in gene transcription compared with control cells. CyaA caused an increase in transcription of many inflammatory genes and genes associated with various signalling cascades such as those involved in cyclic AMP-dependent protein kinase A signalling. Most strikingly, CyaA caused down-regulation of numerous genes involved in cell proliferation. CyaA* at 20 ng/ml significantly up-regulated the transcription of only twelve genes after 24 h whereas proCyaA* at this concentration significantly increased the transcription of only two genes
    corecore