228 research outputs found
MHD Wave Propagation in the Neighbourhood of Two Null Points
The nature of fast magnetoacoustic and Alfv\'en waves is investigated in a
zero plasma in the neighbourhood of a pair of two-dimensional null
points. This gives an indication of wave propagation in the low solar
corona, for a more complicated magnetic configuration than that looked at by
McLaughlin & Hood (2004). It is found that the fast wave is attracted to the
null points and that the front of the wave slows down as it approaches the null
point pair, with the wave splitting and part of the wave accumulating at one
null and the rest at the other. Current density will then accumulate at these
points and ohmic dissipation will then extract the energy in the wave at these
points. This suggests locations where wave heating will occur in the corona.
The Alfv\'en wave behaves in a different manner in that the wave accumulates
along the separatrices. Hence, the current density will accumulate at this part
of the topology and this is where wave heating will occur. However, the
phenomenon of wave accumulation at a specific place is a feature of both wave
types, and illustrates the importance of studying the topology of the corona
when considering MHD wave propagation.Comment: 11 pages, 14 figure
Unexpected selective gas adsorption on a 'non-porous' metal organic framework
A metal organic framework Cu(tpt)BF 4· 3 4 H 2O was synthesized as a potential carbon capture material, with the aim being to exploit the Lewis base interaction of the incorporated ligand functionalities with acidic gas. The material displays high thermal stability but an exceptionally low surface area; however, this contrasts starkly with its ability to capture carbon dioxide, demonstrating significant activated diffusion within the framework. The full characterization of the material shows a robust structure, where the CO 2 sorption is 120% greater than current industrial methods using liquid amine solutions; the thermal energy required for sorbent regeneration is reduced by 65%, indicating the true industrial potential of the synthesized material
“Acting the part of an illiterate savage”: James Kelman and the question of postcolonial masculinity
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory
This paper is a demonstration of how the WKB approximation can be used to
help solve the linearised 3D MHD equations. Using Charpit's Method and a
Runge-Kutta numerical scheme, we have demonstrated this technique for a
potential 3D magnetic null point, .
Under our cold plasma assumption, we have considered two types of wave
propagation: fast magnetoacoustic and Alfv\'en waves. We find that the fast
magnetoacoustic wave experiences refraction towards the magnetic null point,
and that the effect of this refraction depends upon the Alfv\'en speed profile.
The wave, and thus the wave energy, accumulates at the null point. We have
found that current build up is exponential and the exponent is dependent upon
. Thus, for the fast wave there is preferential heating at the null
point. For the Alfv\'en wave, we find that the wave propagates along the
fieldlines. For an Alfv\'en wave generated along the fan-plane, the wave
accumulates along the spine. For an Alfv\'en wave generated across the spine,
the value of determines where the wave accumulation will occur:
fan-plane (), along the axis () or along the
axis (). We have shown analytically that currents build up
exponentially, leading to preferential heating in these areas. The work
described here highlights the importance of understanding the magnetic topology
of the coronal magnetic field for the location of wave heating.Comment: 26 pages, 12 figure
The Number Of Magnetic Null Points In The Quiet Sun Corona
The coronal magnetic field above a particular photospheric region will vanish
at a certain number of points, called null points. These points can be found
directly in a potential field extrapolation or their density can be estimated
from Fourier spectrum of the magnetogram. The spectral estimate, which assumes
that the extrapolated field is random, homogeneous and has Gaussian statistics,
is found here to be relatively accurate for quiet Sun magnetograms from SOHO's
MDI. The majority of null points occur at low altitudes, and their distribution
is dictated by high wavenumbers in the Fourier spectrum. This portion of the
spectrum is affected by Poisson noise, and as many as five-sixths of null
points identified from a direct extrapolation can be attributed to noise. The
null distribution above 1500 km is found to depend on wavelengths that are
reliably measured by MDI in either its low-resolution or high-resolution mode.
After correcting the spectrum to remove white noise and compensate for the
modulation transfer function we find that a potential field extrapolation
contains, on average, one magnetic null point, with altitude greater than 1.5
Mm, above every 322 square Mm patch of quiet Sun. Analysis of 562 quiet Sun
magnetograms spanning the two latest solar minimum shows that the null point
density is relatively constant with roughly 10% day-to-day variation. At
heights above 1.5 Mm, the null point density decreases approximately as the
inverse cube of height. The photospheric field in the quiet Sun is well
approximated as that from discrete elements with mean flux 1.0e19 Mx
distributed randomly with density n=0.007 per square Mm
Selective anti-Leishmanial Strathclyde minor groove binders using an N-oxide tail group modification
The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an emerging class of anti-infective agent that have been shown to have potent activity against various bacteria, viruses, fungi and parasites. Herein, it is shown that S-MGBs have potent activity against L. donovani, and that an N-oxide derivation of the tertiary amine tail of typical S-MGBs leads to selective anti-leishmanial activity. Additionally, using S-MGB-219, the N-oxide derivation is shown to retain strong binding to DNA as a 2:1 dimer. These findings support the further study of anti-leishmanial S-MGBs as novel therapeutics
Institutional Solutions to Precariousness and Inequality in Labour Markets
It has become widely assumed that the standard employment relationship (SER) is in irreversible decline in industrialized societies. However, non-standard and precarious work relationships often complement the SER via labour market transitions, and are not displacing it as the focal point of labour market regulation. The co-ordination and risk management functions of the SER continue to be relevant in market economies, and the SER is adjusting to new conditions. The SER has a complex and evolving relationship to gender and to social stratification. In the European context where the SER originated and achieved its clearest legal expression, institutional solutions to precariousness and inequality are being developed, the most innovative of which avoid simple deregulation in favour of integrated policy responses involving a range of complementary regulatory mechanisms.We are grateful for funding from the Cambridge Political Economy Society TrustThis is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/bjir.1210
The T7-Related Pseudomonas putida Phage ϕ15 Displays Virion-Associated Biofilm Degradation Properties
Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy
Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress
The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions
- …