833 research outputs found

    Revealing microhabitat requirements of an endangered specialist lizard with LiDAR

    Get PDF
    A central principle of threatened species management is the requirement for detailed understanding of species habitat requirements. Difficult terrain or cryptic behaviour can, however, make the study of habitat or microhabitat requirements difficult, calling for innovative data collection techniques. We used high-resolution terrestrial LiDAR imaging to develop three-dimensional models of log piles, quantifying the structural characteristics linked with occupancy of an endangered cryptic reptile, the western spiny-tailed skink (Egernia stokesii badia). Inhabited log piles were generally taller with smaller entrance hollows and a wider main log, had more high-hanging branches, fewer low-hanging branches, more mid- and understorey cover, and lower maximum canopy height. Significant characteristics linked with occupancy were longer log piles, an average of three logs, less canopy cover, and the presence of overhanging vegetation, likely relating to colony segregation, thermoregulatory requirements, and foraging opportunities. In addition to optimising translocation site selection, understanding microhabitat specificity of E. s. badia will help inform a range of management objectives, such as targeted monitoring and invasive predator control. There are also diverse opportunities for the application of this technology to a wide variety of future ecological studies and wildlife management initiatives pertaining to a range of cryptic, understudied taxa

    A topologically unique alternating {Co III 3 Gd III 3 } magnetocaloric ring

    Get PDF
    The adiabatic temperature change of the star-shaped {CoIII3GdIII3} magnetocaloric ring is enhanced via topological control over the assembly process, by using a pre-formed {CoII(H6L)} building block that undergoes oxidation to CoIII, successfully separating the GdIII ions

    Triiodothyronine (T3) levels fluctuate in response to ambient temperature rather than nutritional status in a wild tropical ungulate

    Get PDF
    Animals can employ a range of physiological mechanisms in response to unpredictable changes within their environment, such as changes in food availability and human disturbances. For example, impala exhibit higher faecal glucocorticoid metabolite (FGM) levels—indicative of physiological stress—in response to low food quality and higher human disturbance. In this study, we measured faecal triiodothyronine (T3) metabolite (FTM) levels in 446 wild impala from 2016 to 2018 to test the hypothesis that environmental and human disturbances would affect their physiological status. We also validated a faecal thyroid hormone assay. T3 levels mainly regulate metabolic rate and drive thermoregulation—increasing with colder temperatures. We predicted that individuals would have lower FTM levels, indicative of poor physiological status, (i) when food quality was poor, (ii) when ambient temperature (Ta) was high, (iii) in areas of high human disturbance (due to food competition with livestock) and (iv) when FGM levels were high. Interestingly, we found that Ta was the most important predictor of FTM—FTM levels decreased by 70% from lowest to highest Ta—and food quality and human disturbance only influenced FTM levels when Ta was accounted for. FTM levels also tended to increase with increasing FGM levels, opposite our predictions. Our results suggest that food quality and availabilitymay only partially influence FTM levels and that fluctuations in Ta are a significant driver of FTM levels in a wild tropical ungulate. Given that thyroid hormones are primarily responsible for regulating metabolic rate, they may be better indicators of how wild animals metabolically and energetically respond to environmental factors and only indicate poor nutritional status in extreme cases. glucocorticoid, impala, Serengeti, stress, thyroid hormones, validationpublishedVersio

    Large time existence for 3D water-waves and asymptotics

    Full text link
    We rigorously justify in 3D the main asymptotic models used in coastal oceanography, including: shallow-water equations, Boussinesq systems, Kadomtsev-Petviashvili (KP) approximation, Green-Naghdi equations, Serre approximation and full-dispersion model. We first introduce a ``variable'' nondimensionalized version of the water-waves equations which vary from shallow to deep water, and which involves four dimensionless parameters. Using a nonlocal energy adapted to the equations, we can prove a well-posedness theorem, uniformly with respect to all the parameters. Its validity ranges therefore from shallow to deep-water, from small to large surface and bottom variations, and from fully to weakly transverse waves. The physical regimes corresponding to the aforementioned models can therefore be studied as particular cases; it turns out that the existence time and the energy bounds given by the theorem are always those needed to justify the asymptotic models. We can therefore derive and justify them in a systematic way.Comment: Revised version of arXiv:math.AP/0702015 (notations simplified and remarks added) To appear in Inventione

    From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    Get PDF
    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: (i) through single point inversions (which encompasses also the analysis of MHD wave modes), (ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and (iii) using tomographic techniques.Comment: Accepted by Solar Physics, April 201

    Energy-Dependent Timing of Thermal Emission in Solar Flares

    Full text link
    We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the "Solar X-ray Spectrometer" (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(\epsilon) from the flare by integrating a series of isothermal plasma flux. We find that multi-temperature integrated flux F(\epsilon) is a power-law function of \epsilon with a spectral index (\gamma) \approx -4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E= 4 - 15 keV is dominated by temperatures of T= 12 - 50 MK, while the multi-thermal power-law DEM index (\gamma) varies in the range of -4.4 and -5.7. The temporal evolution of the X-ray flux F(\epsilon,t) assuming a multi-temperature plasma governed by thermal conduction cooling reveals that the temperature-dependent cooling time varies between 296 and 4640 s and the electron density (n_e) varies in the range of n_e= (1.77-29.3)*10^10 cm-3. Employing temporal evolution technique in the current study as an alternative method for separating thermal from non-thermal components in the energy spectra, we measure the break-energy point ranging between 14 and 21\pm1.0 keV.Comment: Solar Physics, in pres

    Level-Spacing Distributions and the Bessel Kernel

    Get PDF
    The level spacing distributions which arise when one rescales the Laguerre or Jacobi ensembles of hermitian matrices is studied. These distributions are expressible in terms of a Fredholm determinant of an integral operator whose kernel is expressible in terms of Bessel functions of order α\alpha. We derive a system of partial differential equations associated with the logarithmic derivative of this Fredholm determinant when the underlying domain is a union of intervals. In the case of a single interval this Fredholm determinant is a Painleve tau function.Comment: 18 pages, resubmitted to make postscript compatible, no changes to manuscript conten

    Isotopic analysis of faunal material from South Uist, Western Isles, Scotland

    Get PDF
    This paper reports on the results from stable isotope analysis of faunal bone collagen from a number of Iron Age and later sites on the island of South Uist, in the Western Isles, Scotland. This preliminary investigation into the isotopic signatures of the fauna is part of a larger project to model the interaction between humans, animals, and the broader environment in the Western Isles. The results demonstrate that the island fauna data fall within the range of expected results for the UK, with the terrestrial herbivorous diets of cattle and sheep confi rmed. The isotopic composition for pigs suggests that some of these animals had an omnivorous diet, whilst a single red deer value might be suggestive of the consumption of marine foods, such as by grazing on seaweed. However, further analysis is needed in order to verify this anomalous isotopic ratio

    Revealing microhabitat requirements of an endangered specialist lizard with LiDAR

    Get PDF
    A central principle of threatened species management is the requirement for detailed understanding of species habitat requirements. Difcult terrain or cryptic behaviour can, however, make the study of habitat or microhabitat requirements difcult, calling for innovative data collection techniques. We used high-resolution terrestrial LiDAR imaging to develop three-dimensional models of log piles, quantifying the structural characteristics linked with occupancy of an endangered cryptic reptile, the western spiny-tailed skink (Egernia stokesii badia). Inhabited log piles were generally taller with smaller entrance hollows and a wider main log, had more high-hanging branches, fewer low-hanging branches, more mid- and understorey cover, and lower maximum canopy height. Signifcant characteristics linked with occupancy were longer log piles, an average of three logs, less canopy cover, and the presence of overhanging vegetation, likely relating to colony segregation, thermoregulatory requirements, and foraging opportunities. In addition to optimising translocation site selection, understanding microhabitat specifcity of E. s. badia will help inform a range of management objectives, such as targeted monitoring and invasive predator control. There are also diverse opportunities for the application of this technology to a wide variety of future ecological studies and wildlife management initiatives pertaining to a range of cryptic, understudied taxa.Holly S. Bradley, Michael D. Craig, Adam T. Cross, SeanTomlinson, Michael J. Bamford, Philip W. Batema

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape
    • …
    corecore